GSTDTAP

浏览/检索结果: 共36条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
A transition to sustainable ocean governance 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Rudolph, Tanya Brodie;  Ruckelshaus, Mary;  Swilling, Mark;  Allison, Edward H.;  Osterblom, Henrik;  Gelcich, Stefan;  Mbatha, Philile
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/21
Between Ostrom and Nordhaus: The research landscape of sustainability economics 期刊论文
ECOLOGICAL ECONOMICS, 2020, 172
作者:  Drupp, Moritz A.;  Baumgaertner, Stefan;  Meyer, Moritz;  Quaas, Martin F.;  von Wehrden, Henrik
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/02
Sustainability  Economics  Human-nature relationship  Uncertainty  Future  Justice  Literature  Bibliographic analysis  Vocabulary  
When worry about climate change leads to climate action: How values, worry and personal responsibility relate to various climate actions 期刊论文
GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2020, 62
作者:  Bouman, Thijs;  Verschoor, Mark;  Albers, Casper J.;  Bohm, Gisela;  Fisher, Stephen D.;  Poortinga, Wouter;  Whitmarsh, Lorraine;  Steg, Linda
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/02
Estimating the size distribution of plastics ingested by animals 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Jams, Ifan B.;  Windsor, Fredric M.;  Poudevigne-Durance, Thomas;  Ormerod, Steve J.;  Durance, Isabelle
收藏  |  浏览/下载:5/0  |  提交时间:2020/05/13
Aggravation of reactive nitrogen flow driven by human production and consumption in Guangzhou City China 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Dong, Yue;  Xu, Linyu;  Yang, Zhifeng;  Zheng, Hanzhong;  Chen, Lei
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
Mechanisms behind concurrent payments for ecosystem services in a Chinese nature reserve 期刊论文
ECOLOGICAL ECONOMICS, 2020, 169
作者:  Yost, Alexandra;  An, Li;  Bilsborrow, Richard;  Shi, Lei;  Chen, Xiaodong;  Yang, Shuang;  Zhang, Weiyong
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/02
Concurrent payments for ecosystem services  Grain-to-green program  Post-participation behavior  China  Afforestation  Land use  
Asian dust-storm activity dominated by Chinese dynasty changes since 2000 BP 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Chen, Fahu;  Chen, Shengqian;  Zhang, Xu;  Chen, Jianhui;  Wang, Xin;  Gowan, Evan J.;  Qiang, Mingrui;  Dong, Guanghui;  Wang, Zongli;  Li, Yuecong;  Xu, Qinghai;  Xu, Yangyang;  Smol, John P.;  Liu, Jianbao
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/13
Premature mortality related to United States cross-state air pollution 期刊论文
NATURE, 2020, 578 (7794) : 261-+
作者:  Helmink, Beth A.;  Reddy, Sangeetha M.;  Gao, Jianjun;  Zhang, Shaojun;  Basar, Rafet;  Thakur, Rohit;  Yizhak, Keren;  Sade-Feldman, Moshe;  Blando, Jorge;  Han, Guangchun;  Gopalakrishnan, Vancheswaran;  Xi, Yuanxin;  Zhao, Hao;  Amaria, Rodabe N.;  Tawbi, Hussein A.;  Cogdill, Alex P.;  Liu, Wenbin;  LeBleu, Valerie S.;  Kugeratski, Fernanda G.;  Patel, Sapna;  Davies, Michael A.;  Hwu, Patrick;  Lee, Jeffrey E.;  Gershenwald, Jeffrey E.;  Lucci, Anthony;  Arora, Reetakshi;  Woodman, Scott;  Keung, Emily Z.;  Gaudreau, Pierre-Olivier;  Reuben, Alexandre;  Spencer, Christine N.;  Burton, Elizabeth M.;  Haydu, Lauren E.;  Lazar, Alexander J.;  Zapassodi, Roberta;  Hudgens, Courtney W.;  Ledesma, Deborah A.;  Ong, SuFey;  Bailey, Michael;  Warren, Sarah;  Rao, Disha;  Krijgsman, Oscar;  Rozeman, Elisa A.;  Peeper, Daniel;  Blank, Christian U.;  Schumacher, Ton N.;  Butterfield, Lisa H.;  Zelazowska, Monika A.;  McBride, Kevin M.;  Kalluri, Raghu;  Allison, James;  Petitprez, Florent;  Fridman, Wolf Herman;  Sautes-Fridman, Catherine;  Hacohen, Nir;  Rezvani, Katayoun;  Sharma, Padmanee;  Tetzlaff, Michael T.;  Wang, Linghua;  Wargo, Jennifer A.
收藏  |  浏览/下载:37/0  |  提交时间:2020/05/13

Outdoor air pollution adversely affects human health and is estimated to be responsible for five to ten per cent of the total annual premature mortality in the contiguous United States(1-3). Combustion emissions from a variety of sources, such as power generation or road traffic, make a large contribution to harmful air pollutants such as ozone and fine particulate matter (PM2.5)(4). Efforts to mitigate air pollution have focused mainly on the relationship between local emission sources and local air quality(2). Air quality can also be affected by distant emission sources, however, including emissions from neighbouring federal states(5,6). This cross-state exchange of pollution poses additional regulatory challenges. Here we quantify the exchange of air pollution among the contiguous United States, and assess its impact on premature mortality that is linked to increased human exposure to PM2.5 and ozone from seven emission sectors for 2005 to 2018. On average, we find that 41 to 53 per cent of air-quality-related premature mortality resulting from a state'  s emissions occurs outside that state. We also find variations in the cross-state contributions of different emission sectors and chemical species to premature mortality, and changes in these variations over time. Emissions from electric power generation have the greatest cross-state impacts as a fraction of their total impacts, whereas commercial/residential emissions have the smallest. However, reductions in emissions from electric power generation since 2005 have meant that, by 2018, cross-state premature mortality associated with the commercial/residential sector was twice that associated with power generation. In terms of the chemical species emitted, nitrogen oxides and sulfur dioxide emissions caused the most cross-state premature deaths in 2005, but by 2018 primary PM2.5 emissions led to cross-state premature deaths equal to three times those associated with sulfur dioxide emissions. These reported shifts in emission sectors and emission species that contribute to premature mortality may help to guide improvements to air quality in the contiguous United States.


  
Stiffness of the human foot and evolution of the transverse arch 期刊论文
NATURE, 2020
作者:  Fujioka, Yuko;  Alam, Jahangir Md.;  Noshiro, Daisuke;  Mouri, Kazunari;  Ando, Toshio;  Okada, Yasushi;  May, Alexander I.;  Knorr, Roland L.;  Suzuki, Kuninori;  Ohsumi, Yoshinori;  Noda, Nobuo N.
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

The transverse tarsal arch, acting through the inter-metatarsal tissues, is important for the longitudinal stiffness of the foot and its appearance is a key step in the evolution of human bipedalism.


The stiff human foot enables an efficient push-off when walking or running, and was critical for the evolution of bipedalism(1-6). The uniquely arched morphology of the human midfoot is thought to stiffen it(5-9), whereas other primates have flat feet that bend severely in the midfoot(7,10,11). However, the relationship between midfoot geometry and stiffness remains debated in foot biomechanics(12,13), podiatry(14,15) and palaeontology(4-6). These debates centre on the medial longitudinal arch(5,6) and have not considered whether stiffness is affected by the second, transverse tarsal arch of the human foot(16). Here we show that the transverse tarsal arch, acting through the inter-metatarsal tissues, is responsible for more than 40% of the longitudinal stiffness of the foot. The underlying principle resembles a floppy currency note that stiffens considerably when it curls transversally. We derive a dimensionless curvature parameter that governs the stiffness contribution of the transverse tarsal arch, demonstrate its predictive power using mechanical models of the foot and find its skeletal correlate in hominin feet. In the foot, the material properties of the inter-metatarsal tissues and the mobility of the metatarsals may additionally influence the longitudinal stiffness of the foot and thus the curvature-stiffness relationship of the transverse tarsal arch. By analysing fossils, we track the evolution of the curvature parameter among extinct hominins and show that a human-like transverse arch was a key step in the evolution of human bipedalism that predates the genus Homo by at least 1.5 million years. This renewed understanding of the foot may improve the clinical treatment of flatfoot disorders, the design of robotic feet and the study of foot function in locomotion.


  
Global-scale human impact on delta morphology has led to net land area gain 期刊论文
NATURE, 2020, 577 (7791) : 514-+
作者:  Nienhuis, J. H.;  Ashton, A. D.;  Edmonds, D. A.;  Hoitink, A. J. F.;  Kettner, A. J.;  Rowland, J. C.;  Tornqvist, T. E.
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13

River deltas rank among the most economically and ecologically valuable environments on Earth. Even in the absence of sea-level rise, deltas are increasingly vulnerable to coastal hazards as declining sediment supply and climate change alter their sediment budget, affecting delta morphology and possibly leading to erosion(1-3). However, the relationship between deltaic sediment budgets, oceanographic forces of waves and tides, and delta morphology has remained poorly quantified. Here we show how the morphology of about 11,000 coastal deltas worldwide, ranging from small bayhead deltas to mega-deltas, has been affected by river damming and deforestation. We introduce a model that shows that present-day delta morphology varies across a continuum between wave (about 80 per cent), tide (around 10 per cent) and river (about 10 per cent) dominance, but that most large deltas are tide- and river-dominated. Over the past 30 years, despite sea-level rise, deltas globally have experienced a net land gain of 54 +/- 12 square kilometres per year (2 standard deviations), with the largest 1 per cent of deltas being responsible for 30 per cent of all net land area gains. Humans are a considerable driver of these net land gains-25 per cent of delta growth can be attributed to deforestation-induced increases in fluvial sediment supply. Yet for nearly 1,000 deltas, river damming(4) has resulted in a severe (more than 50 per cent) reduction in anthropogenic sediment flux, forcing a collective loss of 12 +/- 3.5 square kilometres per year (2 standard deviations) of deltaic land. Not all deltas lose land in response to river damming: deltas transitioning towards tide dominance are currently gaining land, probably through channel infilling. With expected accelerated sea-level rise(5), however, recent land gains are unlikely to be sustained throughout the twenty-first century. Understanding the redistribution of sediments by waves and tides will be critical for successfully predicting human-driven change to deltas, both locally and globally.


A global study of river deltas shows a net increase in delta area by about 54 km(2) yr(-1) over the past 30 years, in part due to deforestation-induced sediment delivery increase.