GSTDTAP

浏览/检索结果: 共240条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Learning from generations of sustainability concepts* 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (8)
作者:  Downing, Andrea S.;  Chang, Manqi;  Kuiper, Jan J.;  Campenni, Marco;  Haeyhae, Tiina;  Cornell, Sarah E.;  Svedin, Uno;  Mooij, Wolf
收藏  |  浏览/下载:16/0  |  提交时间:2020/08/18
planetary boundaries concept  sustainable development  safe operating space  cassandra'  s dilemma  consumer-resource model  resource-consumer-producer-waste model  
Adaptation time to magnified flood hazards underestimated when derived from tide gauge records 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (7)
作者:  Lambert, Erwin;  Rohmer, Jeremy;  Le Cozannet, Goneri;  van de Wal, Roderik S. W.
收藏  |  浏览/下载:7/0  |  提交时间:2020/08/18
Sea-level rise  extreme water level  waves  coastal adaptation  joint probability  
El Nino Diversity Across Boreal Spring Predictability Barrier 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (13)
作者:  Wang, Bin;  Luo, Xiao;  Sun, Weiyi;  Yang, Young-Min;  Liu, Jian
收藏  |  浏览/下载:17/0  |  提交时间:2020/06/16
El Nino diversity  El Nino transition  k-means cluster analysis  El Nino precursors  El Nino impact  spring predictability barrier  
Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system 期刊论文
NATURE, 2020, 577 (7789) : 271-+
作者:  Halpin-Healy, Tyler S.;  Klompe, Sanne E.;  Sternberg, Samuel H.;  Fernandez, Israel S.
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/03

Bacteria use adaptive immune systems encoded by CRISPR and Cas genes to maintain genomic integrity when challenged by pathogens and mobile genetic elements(1-3). Type I CRISPR-Cas systems typically target foreign DNA for degradation via joint action of the ribonucleoprotein complex Cascade and the helicase-nuclease Cas3(4,5), but nuclease-deficient type I systems lacking Cas3 have been repurposed for RNA-guided transposition by bacterial Tn7-like transposons(6,7). How CRISPR- and transposon-associated machineries collaborate during DNA targeting and insertion remains unknown. Here we describe structures of a TniQ-Cascade complex encoded by the Vibrio cholerae Tn6677 transposon using cryo-electron microscopy, revealing the mechanistic basis of this functional coupling. The cryo-electron microscopy maps enabled de novo modelling and refinement of the transposition protein TniQ, which binds to the Cascade complex as a dimer in a head-to-tail configuration, at the interface formed by Cas6 and Cas7 near the 3'  end of the CRISPR RNA (crRNA). The natural Cas8-Cas5 fusion protein binds the 5'  crRNA handle and contacts the TniQ dimer via a flexible insertion domain. A target DNA-bound structure reveals critical interactions necessary for protospacer-adjacent motif recognition and R-loop formation. This work lays the foundation for a structural understanding of how DNA targeting by TniQ-Cascade leads to downstream recruitment of additional transposase proteins, and will guide protein engineering efforts to leverage this system for programmable DNA insertions in genome-engineering applications.


  
Oncometabolites suppress DNA repair by disrupting local chromatin signalling 期刊论文
NATURE, 2020
作者:  Zhang, Xu;  Lei, Bo;  Yuan, Yuan;  Zhang, Li;  Hu, Lu;  Jin, Sen;  Kang, Bilin;  Liao, Xuebin;  Sun, Wenzhi;  Xu, Fuqiang;  Zhong, Yi;  Hu, Ji;  Qi, Hai
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

Metabolites that are elevated in tumours inhibit the lysine demethylase KDM4B, resulting in aberrant hypermethylation of histone 3 lysine 9 and decreased homology-dependent DNA repair.


Deregulation of metabolism and disruption of genome integrity are hallmarks of cancer(1). Increased levels of the metabolites 2-hydroxyglutarate, succinate and fumarate occur in human malignancies owing to somatic mutations in the isocitrate dehydrogenase-1 or -2 (IDH1 or IDH2) genes, or germline mutations in the fumarate hydratase (FH) and succinate dehydrogenase genes (SDHA, SDHB, SDHC and SDHD), respectively(2-4). Recent work has made an unexpected connection between these metabolites and DNA repair by showing that they suppress the pathway of homology-dependent repair (HDR)(5,6) and confer an exquisite sensitivity to inhibitors of poly (ADP-ribose) polymerase (PARP) that are being tested in clinical trials. However, the mechanism by which these oncometabolites inhibit HDR remains poorly understood. Here we determine the pathway by which these metabolites disrupt DNA repair. We show that oncometabolite-induced inhibition of the lysine demethylase KDM4B results in aberrant hypermethylation of histone 3 lysine 9 (H3K9) at loci surrounding DNA breaks, masking a local H3K9 trimethylation signal that is essential for the proper execution of HDR. Consequently, recruitment of TIP60 and ATM, two key proximal HDR factors, is substantially impaired at DNA breaks, with reduced end resection and diminished recruitment of downstream repair factors. These findings provide a mechanistic basis for oncometabolite-induced HDR suppression and may guide effective strategies to exploit these defects for therapeutic gain.


  
Current Models Underestimate Future Irrigated Areas 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (8)
作者:  Puy, A.;  Lo Piano, S.;  Saltelli, A.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
uncertainty  modeling  agriculture  irrigation  sensitivity analysis  
A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by T-reg cells 期刊论文
NATURE, 2020
作者:  Ma, Xiyu;  Claus, Lucas A. N.;  Leslie, Michelle E.;  Tao, Kai;  Wu, Zhiping;  Liu, Jun;  Yu, Xiao;  Li, Bo;  Zhou, Jinggeng;  Savatin, Daniel V.;  Peng, Junmin;  Tyler, Brett M.;  Heese, Antje;  Russinova, Eugenia;  He, Ping;  Shan, Libo
收藏  |  浏览/下载:39/0  |  提交时间:2020/07/03

Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers(1). The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.5(2-7) contains a distal enhancer that is functional in CD4(+) regulatory T (T-reg) cells and required for T-reg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-kappa B to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3(+) T-reg cells, which are unable to control colitis in a cell-transfer model of the disease. In human T-reg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.


Shared synteny guides loss-of-function analysis of human enhancer homologues in mice, identifying a distal enhancer at the autoimmune and allergic disease risk locus at chromosome 11q13.5 whose function in regulatory T cells provides a mechanistic basis for its role in disease.


  
Base-pair conformational switch modulates miR-34a targeting of Sirt1 mRNA 期刊论文
NATURE, 2020, 583 (7814) : 139-+
作者:  Muniz, Juan A.;  Barberena, Diego;  Lewis-Swan, Robert J.;  Young, Dylan J.;  Cline, Julia R. K.;  Rey, Ana Maria;  Thompson, James K.
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

MicroRNAs (miRNAs) regulate the levels of translation of messenger RNAs (mRNAs). At present, the major parameter that can explain the selection of the target mRNA and the efficiency of translation repression is the base pairing between the '  seed'  region of the miRNA and its counterpart mRNA(1). Here we use R-1 rho relaxation-dispersion nuclear magnetic resonance(2) and molecular simulations(3) to reveal a dynamic switch-based on the rearrangement of a single base pair in the miRNA-mRNA duplex-that elongates a weak five-base-pair seed to a complete seven-base-pair seed. This switch also causes coaxial stacking of the seed and supplementary helix fitting into human Argonaute 2 protein (Ago2), reminiscent of an active state in prokaryotic Ago(4,5). Stabilizing this transient state leads to enhanced repression of the target mRNA in cells, revealing the importance of this miRNA-mRNA structure. Our observations tie together previous findings regarding the stepwise miRNA targeting process from an initial '  screening'  state to an '  active'  state, and unveil the role of the RNA duplex beyond the seed in Ago2.


Repression of a messenger RNA by a cognate microRNA depends not only on complementary base pairing, but also on the rearrangement of a single base pair, producing a conformation that fits better within the human Ago2 protein.


  
Metastable Olivine Wedge Beneath the Japan Sea Imaged by Seismic Interferometry 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (6)
作者:  Shen, Zhichao;  Zhan, Zhongwen
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
metastable olivine  inter-source interferometry  deep earthquake mechanism  dry slab core  mantle transition zone  
A Machine Learning Approach to Developing Ground Motion Models From Simulated Ground Motions 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (6)
作者:  Withers, Kyle B.;  Moschetti, Morgan P.;  Thompson, Eric M.
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/02
machine learning  simulated ground motions  seismology  earthquake hazard