GSTDTAP

浏览/检索结果: 共64条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Potential for large-scale CO2 removal via enhanced rock weathering with croplands 期刊论文
NATURE, 2020, 583 (7815) : 242-+
作者:  David J. Beerling;  Euripides P. Kantzas;  Mark R. Lomas;  Peter Wade;  Rafael M. Eufrasio;  Phil Renforth;  Binoy Sarkar;  M. Grace Andrews;  Rachael H. James;  Christopher R. Pearce;  Jean-Francois Mercure;  Hector Pollitt;  Philip B. Holden;  Neil R. Edwards;  Madhu Khanna;  Lenny Koh;  Shaun Quegan;  Nick F. Pidgeon;  Ivan A. Janssens;  James Hansen;  Steven A. Banwart
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/14

Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change(1). ERW also has possible co-benefits for improved food and soil security, and reduced ocean acidification(2-4). Here we use an integrated performance modelling approach to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius(5). China, India, the USA and Brazil have great potential to help achieve average global CDR goals of 0.5 to 2gigatonnes of carbon dioxide (CO2) per year with extraction costs of approximately US$80-180 per tonne of CO2. These goals and costs are robust, regardless of future energy policies. Deployment within existing croplands offers opportunities to align agriculture and climate policy. However, success will depend upon overcoming political and social inertia to develop regulatory and incentive frameworks. We discuss the challenges and opportunities of ERW deployment, including the potential for excess industrial silicate materials (basalt mine overburden, concrete, and iron and steel slag) to obviate the need for new mining, as well as uncertainties in soil weathering rates and land-ocean transfer of weathered products.


  
Entanglement-based secure quantum cryptography over 1,120 kilometres 期刊论文
NATURE, 2020
作者:  Paldi, Flora;  Alver, Bonnie;  Robertson, Daniel;  Schalbetter, Stephanie A.;  Kerr, Alastair;  Kelly, David A.;  Baxter, Jonathan;  Neale, Matthew J.;  Marston, Adele L.
收藏  |  浏览/下载:48/0  |  提交时间:2020/07/03

An efficient entanglement-based quantum key distribution is sent from the Micius satellite to two ground observatories 1,120 kilometres apart to establish secure quantum cryptography for the exchange ofquantum keys.


Quantum key distribution (QKD)(1-3)is a theoretically secure way of sharing secret keys between remote users. It has been demonstrated in a laboratory over a coiled optical fibre up to 404 kilometres long(4-7). In the field, point-to-point QKD has been achieved from a satellite to a ground station up to 1,200 kilometres away(8-10). However, real-world QKD-based cryptography targets physically separated users on the Earth, for which the maximum distance has been about 100 kilometres(11,12). The use of trusted relays can extend these distances from across a typical metropolitan area(13-16)to intercity(17)and even intercontinental distances(18). However, relays pose security risks, which can be avoided by using entanglement-based QKD, which has inherent source-independent security(19,20). Long-distance entanglement distribution can be realized using quantum repeaters(21), but the related technology is still immature for practical implementations(22). The obvious alternative for extending the range of quantum communication without compromising its security is satellite-based QKD, but so far satellite-based entanglement distribution has not been efficient(23)enough to support QKD. Here we demonstrate entanglement-based QKD between two ground stations separated by 1,120 kilometres at a finite secret-key rate of 0.12 bits per second, without the need for trusted relays. Entangled photon pairs were distributed via two bidirectional downlinks from the Micius satellite to two ground observatories in Delingha and Nanshan in China. The development of a high-efficiency telescope and follow-up optics crucially improved the link efficiency. The generated keys are secure for realistic devices, because our ground receivers were carefully designed to guarantee fair sampling and immunity to all known side channels(24,25). Our method not only increases the secure distance on the ground tenfold but also increases the practical security of QKD to an unprecedented level.


  
Evolutionary drought patterns over the Sahel and their teleconnections with low frequency climate oscillations 期刊论文
ATMOSPHERIC RESEARCH, 2020, 233
作者:  Ndehedehe, Christopher E.;  Agutu, Nathan O.;  Ferreira, Vagner G.;  Getirana, Augusto
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
Pacific decadal oscillations  Food security  Rainfall  SPI  SPEI  Atlantic multi-decadal oscillations  
Spatiotemporal changes in aridity and the shift of drylands in Iran 期刊论文
ATMOSPHERIC RESEARCH, 2020, 233
作者:  Pour, Sahar Hadi;  Abd Wahab, Ahmad Khairi;  Shahid, Shamsuddin
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/02
Shift in aridity  Gridded climate data  Wilcoxon rank test  Mann-Kendall test  Landuse  
Experimental demonstration of memory-enhanced quantum communication 期刊论文
NATURE, 2020
作者:  Quinn, Robert A.;  Melnik, Alexey, V;  Vrbanac, Alison;  Fu, Ting;  Patras, Kathryn A.;  Christy, Mitchell P.;  Bodai, Zsolt;  Belda-Ferre, Pedro;  Tripathi, Anupriya;  Chung, Lawton K.;  Downes, Michael;  Welch, Ryan D.;  Quinn, Melissa;  Humphrey, Greg;  Panitchpakdi, Morgan;  Weldon, Kelly C.;  Aksenov, Alexander;  da Silva, Ricardo;  Avila-Pacheco, Julian;  Clish, Clary;  Bae, Sena;  Mallick, Himel;  Franzosa, Eric A.;  Lloyd-Price, Jason;  Bussell, Robert;  Thron, Taren;  Nelson, Andrew T.;  Wang, Mingxun;  Leszczynski, Eric;  Vargas, Fernando;  Gauglitz, Julia M.;  Meehan, Michael J.;  Gentry, Emily;  Arthur, Timothy D.;  Komor, Alexis C.;  Poulsen, Orit;  Boland, Brigid S.;  Chang, John T.;  Sandborn, William J.;  Lim, Meerana;  Garg, Neha;  Lumeng, Julie C.;  Xavier, Ramnik J.;  Kazmierczak, Barbara, I;  Jain, Ruchi;  Egan, Marie;  Rhee, Kyung E.;  Ferguson, David;  Raffatellu, Manuela;  Vlamakis, Hera;  Haddad, Gabriel G.;  Siegel, Dionicio;  Huttenhower, Curtis;  Mazmanian, Sarkis K.;  Evans, Ronald M.;  Nizet, Victor;  Knight, Rob;  Dorrestein, Pieter C.
收藏  |  浏览/下载:36/0  |  提交时间:2020/07/03

The ability to communicate quantum information over long distances is of central importance in quantum science and engineering(1). Although some applications of quantum communication such as secure quantum key distribution(2,3) are already being successfully deployed(4-7), their range is currently limited by photon losses and cannot be extended using straightforward measure-and-repeat strategies without compromising unconditional security(8). Alternatively, quantum repeaters(9), which utilize intermediate quantum memory nodes and error correction techniques, can extend the range of quantum channels. However, their implementation remains an outstanding challenge(10-16), requiring a combination of efficient and high-fidelity quantum memories, gate operations, and measurements. Here we use a single solid-state spin memory integrated in a nanophotonic diamond resonator(17-19) to implement asynchronous photonic Bell-state measurements, which are a key component of quantum repeaters. In a proof-of-principle experiment, we demonstrate high-fidelity operation that effectively enables quantum communication at a rate that surpasses the ideal loss-equivalent direct-transmission method while operating at megahertz clock speeds. These results represent a crucial step towards practical quantum repeaters and large-scale quantum networks(20,21).


A solid-state spin memory is used to demonstrate quantum repeater functionality, which has the potential to overcome photon losses involved in long-distance transmission of quantum information.


  
Sustainable development must account for pandemic risk 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (8) : 3888-3892
作者:  Di Marco, Moreno;  Baker, Michelle L.;  Daszak, Peter;  De Barro, Paul;  Eskew, Evan A.;  Godde, Cecile M.;  Harwood, Tom D.;  Herrero, Mario;  Hoskins, Andrew J.;  Johnson, Erica;  Karesh, William B.;  Machalaba, Catherine;  Garcia, Javier Navarro;  Paini, Dean;  Pirzl, Rebecca;  Smith, Mark Stafford;  Zambrana-Torrelio, Carlos;  Ferrier, Simon
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/13
The regional asymmetric effect of increased daily extreme temperature on the streamflow from a multiscale perspective: A case study of the Yellow River Basin, China 期刊论文
ATMOSPHERIC RESEARCH, 2019, 228: 137-151
作者:  Chen, Lei;  Chang, Jianxia;  Wang, Yimin;  Peng, Shaoming;  Li, Yunyun;  Long, Ruihao;  Wang, Yu
收藏  |  浏览/下载:8/0  |  提交时间:2019/11/27
Streamflow variation  Daily extreme temperature increase scenario  VIC hydrology model  Spatial and temporal scales  Asymmetric effect  Climate elasticity  
Device-independent quantum random-number generation 期刊论文
NATURE, 2018, 562 (7728) : 548-+
作者:  Liu, Yang;  Zhao, Qi;  Li, Ming-Han;  Guan, Jian-Yu;  Zhang, Yanbao;  Bai, Bing;  Zhang, Weijun;  Liu, Wen-Zhao;  Wu, Cheng;  Yuan, Xiao;  Li, Hao;  Munro, W. J.;  Wang, Zhen;  You, Lixing;  Zhang, Jun;  Ma, Xiongfeng;  Fan, Jingyun;  Zhang, Qiang;  Pan, Jian-Wei
收藏  |  浏览/下载:11/0  |  提交时间:2019/11/27
SCIENCE & SECURITY Australia targets foreign influence at universities 期刊论文
SCIENCE, 2019, 365 (6457) : 965-965
作者:  Normile, Dennis
收藏  |  浏览/下载:2/0  |  提交时间:2019/11/27
US universities confront a security storm in Congress 期刊论文
SCIENCE, 2019, 365 (6453) : 531-531
作者:  Mervis, Jeffrey
收藏  |  浏览/下载:2/0  |  提交时间:2019/11/27