GSTDTAP

浏览/检索结果: 共47条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Persistence of soil organic carbon caused by functional complexity 期刊论文
NATURE GEOSCIENCE, 2020
作者:  Lehmann, Johannes;  Hansel, Colleen M.;  Kaiser, Christina;  Kleber, Markus;  Maher, Kate;  Manzoni, Stefano;  Nunan, Naoise;  Reichstein, Markus;  Schimel, Joshua P.;  Torn, Margaret S.;  Wieder, William R.;  Koegel-Knabner, Ingrid
收藏  |  浏览/下载:12/0  |  提交时间:2020/08/09
Individual and combined impacts of future land-use and climate conditions on extreme hydrological events in a representative basin of the Yangtze River Delta, China 期刊论文
ATMOSPHERIC RESEARCH, 2020, 236
作者:  Wang, Qiang;  Xu, Youpeng;  Wang, Yuefeng;  Zhang, Yuqing;  Xiang, Jie;  Xu, Yu;  Wang, Jie
收藏  |  浏览/下载:57/0  |  提交时间:2020/07/02
Hydrological extremes  Climate change  LUCC  Statistical downscaling method  CA-Markov  XRB  
The fate of carbon in a mature forest under carbon dioxide enrichment 期刊论文
NATURE, 2020, 580 (7802) : 227-+
作者:  Sun, P. Z.;  Yang, Q.;  Kuang, W. J.;  Stebunov, Y. V.;  Xiong, W. Q.;  Yu, J.;  Nair, R. R.;  Katsnelson, M. I.;  Yuan, S. J.;  Grigorieva, I. V.;  Lozada-Hidalgo, M.;  Wang, F. C.;  Geim, A. K.
收藏  |  浏览/下载:70/0  |  提交时间:2020/05/13

Carbon dioxide enrichment of a mature forest resulted in the emission of the excess carbon back into the atmosphere via enhanced ecosystem respiration, suggesting that mature forests may be limited in their capacity to mitigate climate change.


Atmospheric carbon dioxide enrichment (eCO(2)) can enhance plant carbon uptake and growth(1-5), thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration(6). Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth(3-5), it is unclear whether mature forests respond to eCO(2) in a similar way. In mature trees and forest stands(7-10), photosynthetic uptake has been found to increase under eCO(2) without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO(2) unclear(4,5,7-11). Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO(2) exposure. We show that, although the eCO(2) treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO(2), and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


  
Tracking of marine predators to protect Southern Ocean ecosystems 期刊论文
NATURE, 2020
作者:  Kim, Eugene;  Kerssemakers, Jacob;  Shaltiel, Indra A.;  Haering, Christian H.;  Dekker, Cees
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/03

Tracking data from 17 marine predator species in the Southern Ocean are used to identify Areas of Ecological Significance, the protection of which could help to mitigate increasing pressures on Southern Ocean ecosystems.


Southern Ocean ecosystems are under pressure from resource exploitation and climate change(1,2). Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40 degrees S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.


  
Transparency on greenhouse gas emissions from mining to enable climate change mitigation 期刊论文
NATURE GEOSCIENCE, 2020, 13 (2) : 100-+
作者:  Azadi, Mehdi;  Northey, Stephen A.;  Ali, Saleem H.;  Edraki, Mansour
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
Spatiotemporal changes of drought characteristics and their dynamic drivers in Canada 期刊论文
ATMOSPHERIC RESEARCH, 2020, 232
作者:  Yang, Yang;  Gan, Thian Yew;  Tan, Xuezhi
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
Drought characteristics  Standardized Precipitation Evapotranspiration  Index  Dynamic linear model  Large-scale climate drivers  Canada  
Water level changes, subsidence, and sea level rise in the Ganges-Brahmaputra-Meghna delta 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (4) : 1867-1876
作者:  Becker, Melanie;  Papa, Fabrice;  Karpytchev, Mikhail;  Delebecque, Caroline;  Krien, Yann;  Khan, Jamal Uddin;  Ballu, Valerie;  Durand, Fabien;  Le Cozannet, Goneri;  Islam, A. K. M. Saiful;  Calmant, Stephane;  Shum, C. K.
收藏  |  浏览/下载:7/0  |  提交时间:2020/05/13
delta  water level  sea level  subsidence  Bangladesh  
Soil carbon storage informed by particulate and mineral-associated organic matter 期刊论文
NATURE GEOSCIENCE, 2019, 12 (12) : 989-+
作者:  Cotrufo, M. Francesca;  Ranalli, Maria Giovanna;  Haddix, Michelle L.;  Six, Johan;  Lugato, Emanuele
收藏  |  浏览/下载:18/0  |  提交时间:2020/02/16
Comment on "The global tree restoration potential" 期刊论文
SCIENCE, 2019, 366 (6463)
作者:  Grainger, Alan;  Iverson, Louis R.;  Marland, Gregg H.;  Prasad, Anantha
收藏  |  浏览/下载:5/0  |  提交时间:2019/11/27
Comment on "The global tree restoration potential" 期刊论文
SCIENCE, 2019, 366 (6463)
作者:  Friedlingstein, Pierre;  Allen, Myles;  Canadell, Josep G.;  Peters, Glen P.;  Seneviratne, Sonia I.
收藏  |  浏览/下载:7/0  |  提交时间:2019/11/27