GSTDTAP

浏览/检索结果: 共38条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Reduced frequency and size of late-twenty-first-century snowstorms over North America 期刊论文
NATURE CLIMATE CHANGE, 2020, 10 (6) : 539-+
作者:  Ashley, Walker S.;  Haberlie, Alex M.;  Gensini, Vittorio A.
收藏  |  浏览/下载:10/0  |  提交时间:2020/06/01
Warming shrivels future snowstorms 期刊论文
NATURE CLIMATE CHANGE, 2020, 10 (6) : 494-495
作者:  Baxter, Martin A.
收藏  |  浏览/下载:5/0  |  提交时间:2020/06/01
Quantifying snowfall from orographic cloud seeding 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (10) : 5190-5195
作者:  Friedrich, Katja;  Ikeda, Kyoko;  Tessendorf, Sarah A.;  French, Jeffrey R.;  Rauber, Robert M.;  Geerts, Bart;  Xue, Lulin;  Rasmussen, Roy M.;  Blestrud, Derek R.;  Kunkel, Melvin L.;  Dawson, Nicholas;  Parkinson, Shaun
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/13
clouds  precipitation  cloud seeding  radar observations  gauge observations  
Quantifying the Spatial Variability of a Snowstorm Using Differential Airborne Lidar 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (3)
作者:  Brandt, W. Tyler;  Bormann, Kat J.;  Cannon, Forest;  Deems, Jeffrey S.;  Painter, Thomas H.;  Steinhoff, Daniel F.;  Dozier, Jeff
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/02
Little influence of Arctic amplification on mid-latitude climate 期刊论文
NATURE CLIMATE CHANGE, 2020, 10 (3) : 231-+
作者:  Dai, Aiguo;  Song, Mirong
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
A Finite Volume Blowing Snow Model for Use With Variable Resolution Meshes 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (2)
作者:  Marsh, Christopher B.;  Pomeroy, John W.;  Spiteri, Raymond J.;  Wheater, Howard S.
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/02
Palaeoclimate evidence of vulnerable permafrost during times of low sea ice 期刊论文
NATURE, 2020, 577 (7789) : 221-+
作者:  Vaks, A.;  Mason, A. J.;  Breitenbach, S. F. M.;  Kononov, A. M.;  Osinzev, A. V.;  Rosensaft, M.;  Borshevsky, A.;  Gutareva, O. S.;  Henderson, G. M.
收藏  |  浏览/下载:10/0  |  提交时间:2020/05/13

Climate change in the Arctic is occurring rapidly, and projections suggest the complete loss of summer sea ice by the middle of this century(1). The sensitivity of permanently frozen ground (permafrost) in the Northern Hemisphere to warming is less clear, and its long-term trends are harder to monitor than those of sea ice. Here we use palaeoclimate data to show that Siberian permafrost is robust to warming when Arctic sea ice is present, but vulnerable when it is absent. Uranium-lead chronology of carbonate deposits (speleothems) in a Siberian cave located at the southern edge of continuous permafrost reveals periods in which the overlying ground was not permanently frozen. The speleothem record starts 1.5 million years ago (Ma), a time when greater equator-to-pole heat transport led to a warmer Northern Hemisphere(2). The growth of the speleothems indicates that permafrost at the cave site was absent at that time, becoming more frequent from about 1.35 Ma, as the Northern Hemisphere cooled, and permanent after about 0.4 Ma. This history mirrors that of year-round sea ice in the Arctic Ocean, which was largely absent before about 0.4 Ma (ref.(3)), but continuously present since that date. The robustness of permafrost when sea ice is present, as well as the increased permafrost vulnerability when sea ice is absent, can be explained by changes in both heat and moisture transport. Reduced sea ice may contribute to warming of Arctic air(4-6), which can lead to warming far inland(7). Open Arctic waters also increase the source of moisture and increase autumn snowfall over Siberia, insulating the ground from low winter temperatures(8-10). These processes explain the relationship between an ice-free Arctic and permafrost thawing before 0.4 Ma. If these processes continue during modern climate change, future loss of summer Arctic sea ice will accelerate the thawing of Siberian permafrost.


  
Precipitation-Runoff and Storage Dynamics in Watersheds Underlain by Till and Permeable Bedrock in Alberta's Rocky Mountains 期刊论文
WATER RESOURCES RESEARCH, 2019, 55 (12) : 10690-10706
作者:  Spencer, S. A.;  Silins, U.;  Anderson, A. E.
收藏  |  浏览/下载:1/0  |  提交时间:2020/02/16
Insights Into Preferential Flow Snowpack Runoff Using Random Forest 期刊论文
WATER RESOURCES RESEARCH, 2019, 55 (12) : 10727-10746
作者:  Avanzi, Francesco;  Johnson, Ryan Curtis;  Oroza, Carlos A.;  Hirashima, Hiroyuki;  Maurer, Tessa;  Yamaguchi, Satoru
收藏  |  浏览/下载:5/0  |  提交时间:2020/02/16
preferential flow  snow  Random Forest  lysimeters  SNOWPACK  
Improving Medium-Range Forecasts of Rain-on-Snow Events in Prealpine Areas 期刊论文
WATER RESOURCES RESEARCH, 2019, 55 (9) : 7638-7661
作者:  Fehlmann, Michael;  Gascon, Estibaliz;  Rohrer, Mario;  Schwarb, Manfred;  Stoffel, Markus
收藏  |  浏览/下载:6/0  |  提交时间:2019/11/27
rain-on-snow events  flood forecasting  early warning  precipitation type  mountain hydrology  snow cover