GSTDTAP

浏览/检索结果: 共115条,第1-10条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
Transparent ferroelectric crystals with ultrahigh piezoelectricity 期刊论文
NATURE, 2020, 577 (7790) : 350-+
作者:  Qiu, Chaorui;  Wang, Bo;  Zhang, Nan;  Zhang, Shujun;  Liu, Jinfeng;  Walker, David;  Wang, Yu;  Tian, Hao;  Shrout, Thomas R.;  Xu, Zhuo;  Chen, Long-Qing;  Li, Fei
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Transparent piezoelectrics are highly desirable for numerous hybrid ultrasound-optical devices ranging from photoacoustic imaging transducers to transparent actuators for haptic applications(1-7). However, it is challenging to achieve high piezoelectricity and perfect transparency simultaneously because most high-performance piezoelectrics are ferroelectrics that contain high-density light-scattering domain walls. Here, through a combination of phase-field simulations and experiments, we demonstrate a relatively simple method of using an alternating-current electric field to engineer the domain structures of originally opaque rhombohedral Pb(Mg1/3Nb2/3)O-3-PbTiO3 (PMN-PT) crystals to simultaneously generate near-perfect transparency, an ultrahigh piezoelectric coefficient d(33) (greater than 2,100 picocoulombs per newton), an excellent electromechanical coupling factor k(33) (about 94 per cent) and a large electro-optical coefficient gamma(33) (approximately 220 picometres per volt), which is far beyond the performance of the commonly used transparent ferroelectric crystal LiNbO3. We find that increasing the domain size leads to a higher d(33) value for the [001]-oriented rhombohedral PMN-PT crystals, challenging the conventional wisdom that decreasing the domain size always results in higher piezoelectricity(8-10). This work presents a paradigm for achieving high transparency and piezoelectricity by ferroelectric domain engineering, and we expect the transparent ferroelectric crystals reported here to provide a route to a wide range of hybrid device applications, such as medical imaging, self-energy-harvesting touch screens and invisible robotic devices.


  
Structure of nevanimibe-bound tetrameric human ACAT1 期刊论文
NATURE, 2020, 581 (7808) : 339-U214
作者:  Ma, Xiyu;  Claus, Lucas A. N.;  Leslie, Michelle E.;  Tao, Kai;  Wu, Zhiping;  Liu, Jun;  Yu, Xiao;  Li, Bo;  Zhou, Jinggeng;  Savatin, Daniel V.;  Peng, Junmin;  Tyler, Brett M.;  Heese, Antje;  Russinova, Eugenia;  He, Ping;  Shan, Libo
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

The structure of human ACAT1 in complex with the inhibitor nevanimibe is resolved by cryo-electron microscopy.


Cholesterol is an essential component of mammalian cell membranes, constituting up to 50% of plasma membrane lipids. By contrast, it accounts for only 5% of lipids in the endoplasmic reticulum (ER)(1). The ER enzyme sterol O-acyltransferase 1 (also named acyl-coenzyme A:cholesterol acyltransferase, ACAT1) transfers a long-chain fatty acid to cholesterol to form cholesteryl esters that coalesce into cytosolic lipid droplets. Under conditions of cholesterol overload, ACAT1 maintains the low cholesterol concentration of the ER and thereby has an essential role in cholesterol homeostasis(2,3). ACAT1 has also been implicated in Alzheimer'  s disease(4), atherosclerosis(5) and cancers(6). Here we report a cryo-electron microscopy structure of human ACAT1 in complex with nevanimibe(7), an inhibitor that is in clinical trials for the treatment of congenital adrenal hyperplasia. The ACAT1 holoenzyme is a tetramer that consists of two homodimers. Each monomer contains nine transmembrane helices (TMs), six of which (TM4-TM9) form a cavity that accommodates nevanimibe and an endogenous acyl-coenzyme A. This cavity also contains a histidine that has previously been identified as essential for catalytic activity(8). Our structural data and biochemical analyses provide a physical model to explain the process of cholesterol esterification, as well as details of the interaction between nevanimibe and ACAT1, which may help to accelerate the development of ACAT1 inhibitors to treat related diseases.


  
Structure and mechanism of human diacylglycerol O-acyltransferase 1 期刊论文
NATURE, 2020, 581 (7808) : 329-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

The structure of human diacylglycerol O-acyltransferase 1, a membrane protein that synthesizes triacylglycerides, is solved with cryo-electron microscopy, providing insight into its function and mechanism of enzymatic activity.


Diacylglycerol O-acyltransferase 1 (DGAT1) synthesizes triacylglycerides and is required for dietary fat absorption and fat storage in humans(1). DGAT1 belongs to the membrane-bound O-acyltransferase (MBOAT) superfamily, members of which are found in all kingdoms of life and are involved in the acylation of lipids and proteins(2,3). How human DGAT1 and other mammalian members of the MBOAT family recognize their substrates and catalyse their reactions is unknown. The absence of three-dimensional structures also hampers rational targeting of DGAT1 for therapeutic purposes. Here we present the cryo-electron microscopy structure of human DGAT1 in complex with an oleoyl-CoA substrate. Each DGAT1 protomer has nine transmembrane helices, eight of which form a conserved structural fold that we name the MBOAT fold. The MBOAT fold in DGAT1 forms a hollow chamber in the membrane that encloses highly conserved catalytic residues. The chamber has separate entrances for each of the two substrates, fatty acyl-CoA and diacylglycerol. DGAT1 can exist as either a homodimer or a homotetramer and the two forms have similar enzymatic activity. The N terminus of DGAT1 interacts with the neighbouring protomer and these interactions are required for enzymatic activity.


  
Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I 期刊论文
NATURE, 2020, 581 (7806) : 100-+
作者:  Waszak, Sebastian M.;  Robinson, Giles W.;  Gudenas, Brian L.;  Smith, Kyle S.;  Forget, Antoine;  Kojic, Marija;  Garcia-Lopez, Jesus;  Hadley, Jennifer;  Hamilton, Kayla V.;  Indersie, Emilie;  Buchhalter, Ivo;  Kerssemakers, Jules;  Jager, Natalie;  Sharma, Tanvi;  Rausch, Tobias;  Kool, Marcel;  Sturm, Dominik;  Jones, David T. W.;  Vasilyeva, Aksana;  Tatevossian, Ruth G.;  Neale, Geoffrey;  Lombard, Berangere;  Loew, Damarys;  Nakitandwe, Joy;  Rusch, Michael;  Bowers, Daniel C.;  Bendel, Anne;  Partap, Sonia;  Chintagumpala, Murali;  Crawford, John;  Gottardo, Nicholas G.;  Smith, Amy;  Dufour, Christelle;  Rutkowski, Stefan;  Eggen, Tone;  Wesenberg, Finn;  Kjaerheim, Kristina;  Feychting, Maria;  Lannering, Birgitta;  Schuz, Joachim;  Johansen, Christoffer;  Andersen, Tina V.;  Roosli, Martin;  Kuehni, Claudia E.;  Grotzer, Michael;  Remke, Marc;  Puget, Stephanie;  Pajtler, Kristian W.;  Milde, Till;  Witt, Olaf;  Ryzhova, Marina;  Korshunov, Andrey;  Orr, Brent A.;  Ellison, David W.;  Brugieres, Laurence;  Lichter, Peter;  Nichols, Kim E.;  Gajjar, Amar;  Wainwright, Brandon J.;  Ayrault, Olivier;  Korbel, Jan O.;  Northcott, Paul A.;  Pfister, Stefan M.
收藏  |  浏览/下载:38/0  |  提交时间:2020/07/03

Immune evasion is a major obstacle for cancer treatment. Common mechanisms of evasion include impaired antigen presentation caused by mutations or loss of heterozygosity of the major histocompatibility complex class I (MHC-I), which has been implicated in resistance to immune checkpoint blockade (ICB) therapy(1-3). However, in pancreatic ductal adenocarcinoma (PDAC), which is resistant to most therapies including ICB4, mutations that cause loss of MHC-I are rarely found(5) despite the frequent downregulation of MHC-I expression(6-8). Here we show that, in PDAC, MHC-I molecules are selectively targeted for lysosomal degradation by an autophagy-dependent mechanism that involves the autophagy cargo receptor NBR1. PDAC cells display reduced expression of MHC-I at the cell surface and instead demonstrate predominant localization within autophagosomes and lysosomes. Notably, inhibition of autophagy restores surface levels of MHC-I and leads to improved antigen presentation, enhanced anti-tumour T cell responses and reduced tumour growth in syngeneic host mice. Accordingly, the anti-tumour effects of autophagy inhibition are reversed by depleting CD8(+) T cells or reducing surface expression of MHC-I. Inhibition of autophagy, either genetically or pharmacologically with chloroquine, synergizes with dual ICB therapy (anti-PD1 and anti-CTLA4 antibodies), and leads to an enhanced anti-tumour immune response. Our findings demonstrate a role for enhanced autophagy or lysosome function in immune evasion by selective targeting of MHC-I molecules for degradation, and provide a rationale for the combination of autophagy inhibition and dual ICB therapy as a therapeutic strategy against PDAC.


Inhibition of the autophagy-lysosome system upregulates surface expression of MHC class I proteins and enhances antigen presentation, and evokes a potent anti-tumour immune response that is mediated by CD8(+) T cells.


  
Spin-cooling of the motion of a trapped diamond 期刊论文
NATURE, 2020
作者:  Auer, Thomas O.;  Khallaf, Mohammed A.;  Silbering, Ana F.;  Zappia, Giovanna;  Ellis, Kaitlyn;  Alvarez-Ocana, Raquel;  Arguello, J. Roman;  Hansson, Bill S.;  Jefferis, Gregory S. X. E.;  Caron, Sophie J. C.;  Knaden, Markus;  Benton, Richard
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Coupling the spins of many nitrogen-vacancy centres in a trapped diamond to its orientation produces a spin-dependent torque and spin-cooling of the motion of the diamond.


Observing and controlling macroscopic quantum systems has long been a driving force in quantum physics research. In particular, strong coupling between individual quantum systems and mechanical oscillators is being actively studied(1-3). Whereas both read-out of mechanical motion using coherent control of spin systems(4-9) and single-spin read-out using pristine oscillators have been demonstrated(10,11), temperature control of the motion of a macroscopic object using long-lived electronic spins has not been reported. Here we observe a spin-dependent torque and spin-cooling of the motion of a trapped microdiamond. Using a combination of microwave and laser excitation enables the spins of nitrogen-vacancy centres to act on the diamond orientation and to cool the diamond libration via a dynamical back-action. Furthermore, by driving the system in the nonlinear regime, we demonstrate bistability and self-sustained coherent oscillations stimulated by spin-mechanical coupling, which offers the prospect of spin-driven generation of non-classical states of motion. Such a levitating diamond-held in position by electric field gradients under vacuum-can operate as a '  compass'  with controlled dissipation and has potential use in high-precision torque sensing(12-14), emulation of the spin-boson problem(15) and probing of quantum phase transitions(16). In the single-spin limit(17) and using ultrapure nanoscale diamonds, it could allow quantum non-demolition read-out of the spin of nitrogen-vacancy centres at ambient conditions, deterministic entanglement between distant individual spins(18) and matter-wave interferometry(16,19,20).


  
Chiral superconductivity in heavy-fermion metal UTe2 期刊论文
NATURE, 2020, 579 (7800) : 523-527
作者:  Chica, Daniel G.;  He, Yihui;  McCall, Kyle M.;  Chung, Duck Young;  Pak, Rahmi O.;  Trimarchi, Giancarlo;  Liu, Zhifu;  De Lurgio, Patrick M.;  Wessels, Bruce W.;  Kanatzidis, Mercouri G.
收藏  |  浏览/下载:45/0  |  提交时间:2020/07/03

Scanning tunnelling microscopy and spectroscopy measurements show chiral edge states inside the superconducting gap of the heavy-fermion superconductor UTe2, indicating the presence of chiral spin-triplet superconductivity.


Spin-triplet superconductors are condensates of electron pairs with spin 1 and an odd-parity wavefunction(1). An interesting manifestation of triplet pairing is the chiral p-wave state, which is topologically non-trivial and provides a natural platform for realizing Majorana edge modes(2,3). However, triplet pairing is rare in solid-state systems and has not been unambiguously identified in any bulk compound so far. Given that pairing is usually mediated by ferromagnetic spin fluctuations, uranium-based heavy-fermion systems containing f-electron elements, which can harbour both strong correlations and magnetism, are considered ideal candidates for realizing spin-triplet superconductivity(4). Here we present scanning tunnelling microscopy studies of the recently discovered heavy-fermion superconductor UTe2, which has a superconducting transition temperature of 1.6 kelvin(5). We find signatures of coexisting Kondo effect and superconductivity that show competing spatial modulations within one unit cell. Scanning tunnelling spectroscopy at step edges reveals signatures of chiral in-gap states, which have been predicted to exist at the boundaries of topological superconductors. Combined with existing data that indicate triplet pairing in UTe2, the presence of chiral states suggests that UTe2 is a strong candidate for chiral-triplet topological superconductivity.


  
Metabolites released from apoptotic cells act as tissue messengers 期刊论文
NATURE, 2020
作者:  Chica, Daniel G.;  He, Yihui;  McCall, Kyle M.;  Chung, Duck Young;  Pak, Rahmi O.;  Trimarchi, Giancarlo;  Liu, Zhifu;  De Lurgio, Patrick M.;  Wessels, Bruce W.;  Kanatzidis, Mercouri G.
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Caspase-dependent apoptosis accounts for approximately 90% of homeostatic cell turnover in the body(1), and regulates inflammation, cell proliferation, and tissue regeneration(2-4). How apoptotic cells mediate such diverse effects is not fully understood. Here we profiled the apoptotic metabolite secretome and determined its effects on the tissue neighbourhood. We show that apoptotic lymphocytes and macrophages release specific metabolites, while retaining their membrane integrity. A subset of these metabolites is also shared across different primary cells and cell lines after the induction of apoptosis by different stimuli. Mechanistically, the apoptotic metabolite secretome is not simply due to passive emptying of cellular contents and instead is a regulated process. Caspase-mediated opening of pannexin 1 channels at the plasma membrane facilitated the release of a select subset of metabolites. In addition, certain metabolic pathways continued to remain active during apoptosis, with the release of only select metabolites from a given pathway. Functionally, the apoptotic metabolite secretome induced specific gene programs in healthy neighbouring cells, including suppression of inflammation, cell proliferation, and wound healing. Furthermore, a cocktail of apoptotic metabolites reduced disease severity in mouse models of inflammatory arthritis and lung-graft rejection. These data advance the concept that apoptotic cells are not inert cells waiting for removal, but instead release metabolites as '  good-bye'  signals to actively modulate outcomes in tissues.


Apoptotic cells communicate with neighbouring cells by the regulated release of specific metabolites, and a cocktail of select apoptotic metabolites reduces disease severity in mouse models of inflammatory arthritis and lung transplant rejection.


  
Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis 期刊论文
NATURE, 2020, 578 (7796) : 577-+
作者:  Bogomilov, M.;  Tsenov, R.;  Vankova-Kirilova, G.;  Song, Y. P.;  Tang, J. Y.;  Li, Z. H.;  Bertoni, R.;  Bonesini, M.;  Chignoli, F.;  Mazza, R.;  Palladino, V;  de Bari, A.;  Orestano, D.;  Tortora, L.;  Kuno, Y.;  Sakamoto, H.;  Sato, A.;  Ishimoto, S.;  Chung, M.;  Sung, C. K.;  Filthaut, F.;  Jokovic, D.;  Maletic, D.;  Savic, M.;  Jovancevic, N.;  Nikolov, J.;  Vretenar, M.;  Ramberger, S.;  Asfandiyarov, R.;  Blondel, A.;  Drielsma, F.;  Karadzhov, Y.;  Boyd, S.;  Greis, J. R.;  Lord, T.;  Pidcott, C.;  Taylor, I;  Charnley, G.;  Collomb, N.;  Dumbell, K.;  Gallagher, A.;  Grant, A.;  Griffiths, S.;  Hartnett, T.;  Martlew, B.;  Moss, A.;  Muir, A.;  Mullacrane, I;  Oates, A.;  Owens, P.;  Stokes, G.;  Warburton, P.;  White, C.;  Adams, D.;  Bayliss, V;  Boehm, J.;  Bradshaw, T. W.;  Brown, C.;  Courthold, M.;  Govans, J.;  Hills, M.;  Lagrange, J-B;  Macwaters, C.;  Nichols, A.;  Preece, R.;  Ricciardi, S.;  Rogers, C.;  Stanley, T.;  Tarrant, J.;  Tucker, M.;  Watson, S.;  Wilson, A.;  Bayes, R.;  Nugent, J. C.;  Soler, F. J. P.;  Chatzitheodoridis, G. T.;  Dick, A. J.;  Ronald, K.;  Whyte, C. G.;  Young, A. R.;  Gamet, R.;  Cooke, P.;  Blackmore, V. J.;  Colling, D.;  Dobbs, A.;  Dornan, P.;  Franchini, P.;  Hunt, C.;  Jurj, P. B.;  Kurup, A.;  Long, K.;  Martyniak, J.;  Middleton, S.;  Pasternak, J.;  Uchida, M. A.;  Cobb, J. H.;  Booth, C. N.;  Hodgson, P.;  Langlands, J.;  Overton, E.;  Pec, V;  Smith, P. J.;  Wilbur, S.;  Ellis, M.;  Gardener, R. B. S.;  Kyberd, P.;  Nebrensky, J. J.;  DeMello, A.;  Gourlay, S.;  Lambert, A.;  Li, D.;  Luo, T.;  Prestemon, S.;  Virostek, S.;  Palmer, M.;  Witte, H.;  Adey, D.;  Bross, A. D.;  Bowring, D.;  Liu, A.;  Neuffer, D.;  Popovic, M.;  Rubinov, P.;  Freemire, B.;  Hanlet, P.;  Kaplan, D. M.;  Mohayai, T. A.;  Rajaram, D.;  Snopok, P.;  Torun, Y.;  Cremaldi, L. M.;  Sanders, D. A.;  Summers, D. J.;  Coney, L. R.;  Hanson, G. G.;  Heidt, C.
收藏  |  浏览/下载:33/0  |  提交时间:2020/07/03

Hydrogen peroxide (H2O2) is a major reactive oxygen species in unicellular and multicellular organisms, and is produced extracellularly in response to external stresses and internal cues(1-4). H2O2 enters cells through aquaporin membrane proteins and covalently modifies cytoplasmic proteins to regulate signalling and cellular processes. However, whether sensors for H2O2 also exist on the cell surface remains unknown. In plant cells, H2O2 triggers an influx of Ca2+ ions, which is thought to be involved in H2O2 sensing and signalling. Here, by using forward genetic screens based on Ca2+ imaging, we isolated hydrogen-peroxide-induced Ca(2+)increases (hpca) mutants in Arabidopsis, and identified HPCA1 as a leucine-rich-repeat receptor kinase belonging to a previously uncharacterized subfamily that features two extra pairs of cysteine residues in the extracellular domain. HPCA1 is localized to the plasma membrane and is activated by H2O2 via covalent modification of extracellular cysteine residues, which leads to autophosphorylation of HPCA1. HPCA1 mediates H2O2-induced activation of Ca2+ channels in guard cells and is required for stomatal closure. Our findings help to identify how the perception of extracellular H2O2 is integrated with responses to various external stresses and internal cues in plants, and have implications for the design of crops with enhanced fitness.


HPCA1, a member of a previously uncharacterized subfamily of leucine-rich-repeat receptor-like kinases, is the hydrogen-peroxide sensor at the plasma membrane in Arabidopsis.


  
Spin current from sub-terahertz-generated antiferromagnetic magnons 期刊论文
NATURE, 2020, 578 (7793) : 70-+
作者:  Zemp, M.;  Huss, M.;  Thibert, E.;  Eckert, N.;  McNabb, R.;  Huber, J.;  Barandun, M.;  Machguth, H.;  Nussbaumer, S. U.;  Gartner-Roer, I.;  Thomson, L.;  Paul, F.;  Maussion, F.;  Kutuzov, S.;  Cogley, J. G.
收藏  |  浏览/下载:42/0  |  提交时间:2020/07/03

Pure spin currents are simultaneously generated and detected electrically through sub-terahertz magnons in the antiferromagnetic insulator Cr2O3, demonstrating the potential of magnon excitations in antiferromagnets for high-frequency spintronic devices.


Spin dynamics in antiferromagnets has much shorter timescales than in ferromagnets, offering attractive properties for potential applications in ultrafast devices(1-3). However, spin-current generation via antiferromagnetic resonance and simultaneous electrical detection by the inverse spin Hall effect in heavy metals have not yet been explicitly demonstrated(4-6). Here we report sub-terahertz spin pumping in heterostructures of a uniaxial antiferromagnetic Cr2O3 crystal and a heavy metal (Pt or Ta in its beta phase). At 0.240 terahertz, the antiferromagnetic resonance in Cr2O3 occurs at about 2.7 tesla, which excites only right-handed magnons. In the spin-canting state, another resonance occurs at 10.5 tesla from the precession of induced magnetic moments. Both resonances generate pure spin currents in the heterostructures, which are detected by the heavy metal as peaks or dips in the open-circuit voltage. The pure-spin-current nature of the electrically detected signals is unambiguously confirmed by the reversal of the voltage polarity observed under two conditions: when switching the detector metal from Pt to Ta, reversing the sign of the spin Hall angle(7-9), and when flipping the magnetic-field direction, reversing the magnon chirality(4,5). The temperature dependence of the electrical signals at both resonances suggests that the spin current contains both coherent and incoherent magnon contributions, which is further confirmed by measurements of the spin Seebeck effect and is well described by a phenomenological theory. These findings reveal the unique characteristics of magnon excitations in antiferromagnets and their distinctive roles in spin-charge conversion in the high-frequency regime.


  
Bacterial coexistence driven by motility and spatial competition 期刊论文
NATURE, 2020, 578 (7796) : 588-+
作者:  Micke, P.;  Leopold, T.;  King, S. A.;  Benkler, E.;  Spiess, L. J.;  Schmoeger, L.;  Schwarz, M.;  Crespo Lopez-Urrutia, J. R.;  Schmidt, P. O.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Elucidating elementary mechanisms that underlie bacterial diversity is central to ecology(1,2) and microbiome research(3). Bacteria are known to coexist by metabolic specialization(4), cooperation(5) and cyclic warfare(6-8). Many species are also motile(9), which is studied in terms of mechanism(10,11), benefit(12,13), strategy(14,15), evolution(16,17) and ecology(18,19). Indeed, bacteria often compete for nutrient patches that become available periodically or by random disturbances(2,20,21). However, the role of bacterial motility in coexistence remains unexplored experimentally. Here we show that-for mixed bacterial populations that colonize nutrient patches-either population outcompetes the other when low in relative abundance. This inversion of the competitive hierarchy is caused by active segregation and spatial exclusion within the patch: a small fast-moving population can outcompete a large fast-growing population by impeding its migration into the patch, while a small fast-growing population can outcompete a large fast-moving population by expelling it from the initial contact area. The resulting spatial segregation is lost for weak growth-migration trade-offs and a lack of virgin space, but is robust to population ratio, density and chemotactic ability, and is observed in both laboratory and wild strains. These findings show that motility differences and their trade-offs with growth are sufficient to promote diversity, and suggest previously undescribed roles for motility in niche formation and collective expulsion-containment strategies beyond individual search and survival.


In mixed bacterial populations that colonize nutrient patches, a growth-migration trade-off can lead to spatial exclusion that provides an advantage to populations that become rare, thereby stabilizing the community.