GSTDTAP

浏览/检索结果: 共53条,第1-10条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial 期刊论文
NATURE, 2020, 583 (7817) : 554-+
作者:  T. Blackburn;  G. H. Edwards;  S. Tulaczyk;  M. Scudder;  G. Piccione;  B. Hallet;  N. McLean;  J. C. Zachos;  B. Cheney;  J. T. Babbe
收藏  |  浏览/下载:21/0  |  提交时间:2020/08/09

Uranium isotopes in subglacial precipitates from the Wilkes Basin of the East Antarctic Ice Sheet reveal ice retreat during a warm Pleistocene interglacial period about 400,000 years ago.


Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth'  s past interglacial warm periods(1-3). About 400,000 years ago, during the interglacial period known as Marine Isotopic Stage 11 (MIS11), the global temperature was 1 to 2 degrees Celsius greater(2)and sea level was 6 to 13 metres higher(1,3). Sea level estimates in excess of about 10 metres, however, have been discounted because these require a contribution from the East Antarctic Ice Sheet(3), which has been argued to have remained stable for millions of years before and includes MIS11(4,5). Here we show how the evolution of(234)U enrichment within the subglacial waters of East Antarctica recorded the ice sheet'  s response to MIS11 warming. Within the Wilkes Basin, subglacial chemical precipitates of opal and calcite record accumulation of(234)U (the product of rock-water contact within an isolated subglacial reservoir) up to 20 times higher than that found in marine waters. The timescales of(234)U enrichment place the inception of this reservoir at MIS11. Informed by the(234)U cycling observed in the Laurentide Ice Sheet, where(234)U accumulated during periods of ice stability(6)and was flushed to global oceans in response to deglaciation(7), we interpret our East Antarctic dataset to represent ice loss within the Wilkes Basin at MIS11. The(234)U accumulation within the Wilkes Basin is also observed in the McMurdo Dry Valleys brines(8-10), indicating(11)that the brine originated beneath the adjacent East Antarctic Ice Sheet. The marine origin of brine salts(10)and bacteria(12)implies that MIS11 ice loss was coupled with marine flooding. Collectively, these data indicate that during one of the warmest Pleistocene interglacials, the ice sheet margin at the Wilkes Basin retreated to near the precipitate location, about 700 kilometres inland from the current position of the ice margin, which-assuming current ice volumes-would have contributed about 3 to 4 metres(13)to global sea levels.


  
Large and projected strengthening moisture limitation on end-of-season photosynthesis 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (17) : 9216-9222
作者:  Zhang, Yao;  Parazoo, Nicholas C.;  Williams, A. Park;  Zhou, Sha;  Gentine, Pierre
收藏  |  浏览/下载:12/0  |  提交时间:2020/05/13
end of photosynthesis  solar induced fluorescence (SIF)  gross primary production (GPP)  climate change  water stress  
Dry and moist dynamics shape regional patterns of extreme precipitation sensitivity 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (16) : 8757-8763
作者:  Nie, Ji;  Dai, Panxi;  Sobel, Adam H.
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
precipitation extreme  convection  climate change  
Extreme weather events recorded by daily to hourly resolution biogeochemical proxies of marine giant clam shells 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (13) : 7038-7043
作者:  Yan, Hong;  Liu, Chengcheng;  An, Zhisheng;  Yang, Wei;  Yang, Yuanjian;  Huang, Ping;  Qiu, Shican;  Zhou, Pengchao;  Zhao, Nanyu;  Fei, Haobai;  Ma, Xiaolin;  Shi, Ge;  Dodson, John;  Hao, Jialong;  Yu, Kefu;  Wei, Gangjian;  Yang, Yanan;  Jin, Zhangdong;  Zhou, Weijian
收藏  |  浏览/下载:14/0  |  提交时间:2020/05/13
Tridacna shell  daily growth bands  ultra-high resolution  biogeochemical proxies  weather-timescale extreme events  
Timing and magnitude of Southern Ocean sea ice/carbon cycle feedbacks 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (9) : 4498-4504
作者:  Stein, Karl;  Timmermann, Axel;  Kwon, Eun Young;  Friedrich, Tobias
收藏  |  浏览/下载:5/0  |  提交时间:2020/05/13
Southern Ocean  sea ice  glacial cycles  carbon cycle  
Intraplate volcanism originating from upwelling hydrous mantle transition zone 期刊论文
NATURE, 2020
作者:  Calabrese, Claudia;  Davidson, Natalie R.;  Demircioglu, Deniz;  Fonseca, Nuno A.;  He, Yao;  Kahles, Andre;  Kjong-Van Lehmann;  Liu, Fenglin;  Shiraishi, Yuichi;  Soulette, Cameron M.;  Urban, Lara;  Greger, Liliana;  Li, Siliang;  Liu, Dongbing;  Perry, Marc D.;  Xiang, Qian;  Zhang, Fan;  Zhang, Junjun;  Bailey, Peter;  Erkek, Serap;  Hoadley, Katherine A.;  Hou, Yong;  Huska, Matthew R.;  Kilpinen, Helena;  Korbel, Jan O.;  Marin, Maximillian G.;  Markowski, Julia;  Nandi, Tannistha;  Pan-Hammarstrom, Qiang;  Pedamallu, Chandra Sekhar;  Siebert, Reiner;  Stark, Stefan G.;  Su, Hong;  Tan, Patrick;  Waszak, Sebastian M.;  Yung, Christina;  Zhu, Shida;  Awadalla, Philip;  Creighton, Chad J.;  Meyerson, Matthew;  Ouellette, B. F. Francis;  Wu, Kui;  Yang, Huanming;  Brazma, Alvis;  Brooks, Angela N.;  Goke, Jonathan;  Raetsch, Gunnar;  Schwarz, Roland F.;  Stegle, Oliver;  Zhang, Zemin
收藏  |  浏览/下载:79/0  |  提交时间:2020/05/13

Most magmatism occurring on Earth is conventionally attributed to passive mantle upwelling at mid-ocean ridges, to slab devolatilization at subduction zones, or to mantle plumes. However, the widespread Cenozoic intraplate volcanism in northeast China(1-3) and the young petit-spot volcanoes(4-7) offshore of the Japan Trench cannot readily be associated with any of these mechanisms. In addition, the mantle beneath these types of volcanism is characterized by zones of anomalously low seismic velocity above and below the transition zone(8-12) (a mantle level located at depths between 410 and 660 kilometres). A comprehensive interpretation of these phenomena is lacking. Here we show that most (or possibly all) of the intraplate and petit-spot volcanism and low-velocity zones around the Japanese subduction zone can be explained by the Cenozoic interaction of the subducting Pacific slab with a hydrous mantle transition zone. Numerical modelling indicates that 0.2 to 0.3 weight per cent of water dissolved in mantle minerals that are driven out from the transition zone in response to subduction and retreat of a tectonic plate is sufficient to reproduce the observations. This suggests that a critical amount of water may have accumulated in the transition zone around this subduction zone, as well as in others of the Tethyan tectonic belt(13) that are characterized by intraplate or petit-spot volcanism and low-velocity zones in the underlying mantle.


The widespread intraplate volcanism in northeast China and the unusual '  petit-spot'  volcanoes offshore Japan could have resulted from the interaction of the subducting Pacific slab with a hydrous mantle transition zone.


  
Middle Holocene expansion of Pacific Deep Water into the Southern Ocean 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (2) : 889-894
作者:  Struve, Torben;  Wilson, David J.;  van de Flierdt, Tina;  Pratt, Naomi;  Crocket, Kirsty C.
收藏  |  浏览/下载:7/0  |  提交时间:2020/05/13
Southern Ocean  cold-water corals  neodymium isotopes  Holocene  water mass mixing  
A low climate threshold for south Greenland Ice Sheet demise during the Late Pleistocene 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (1) : 190-195
作者:  Irvali, Nil;  Galaasen, Eirik V.;  Ninnemann, Ulysses S.;  Rosenthal, Yair;  Born, Andreas;  Kleiven, Helga (Kikki) F.
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
Greenland Ice Sheet  Late Pleistocene interglacials  climate change  thresholds  
The past and future of global river ice 期刊论文
NATURE, 2020, 577 (7788) : 69-+
作者:  Yang, Xiao;  Pavelsky, Tamlin M.;  Allen, George H.
收藏  |  浏览/下载:7/0  |  提交时间:2020/05/13

More than one-third of Earth'  s landmass is drained by rivers that seasonally freeze over. Ice transforms the hydrologic(1,2), ecologic(3,4), climatic(5) and socio-economic(6-8) functions of river corridors. Although river ice extent has been shown to be declining in many regions of the world(1), the seasonality, historical change and predicted future changes in river ice extent and duration have not yet been quantified globally. Previous studies of river ice, which suggested that declines in extent and duration could be attributed to warming temperatures(9,10), were based on data from sparse locations. Furthermore, existing projections of future ice extent are based solely on the location of the 0-degrees C isotherm11. Here, using satellite observations, we show that the global extent of river ice is declining, and we project a mean decrease in seasonal ice duration of 6.10 +/- 0.08 days per 1-degrees C increase in global mean surface air temperature. We tracked the extent of river ice using over 400,000 clear-sky Landsat images spanning 1984-2018 and observed a mean decline of 2.5 percentage points globally in the past three decades. To project future changes in river ice extent, we developed an observationally calibrated and validated model, based on temperature and season, which reduced the mean bias by 87 per cent compared with the 0-degree-Celsius isotherm approach. We applied this model to future climate projections for 2080-2100: compared with 2009-2029, the average river ice duration declines by 16.7 days under Representative Concentration Pathway (RCP) 8.5, whereas under RCP 4.5 it declines on average by 7.3 days. Our results show that, globally, river ice is measurably declining and will continue to decline linearly with projected increases in surface air temperature towards the end of this century.


  
High-surface-area corundum by mechanochemically induced phase transformation of boehmite 期刊论文
SCIENCE, 2019, 366 (6464) : 485-+
作者:  Amrute, Amol P.;  Lodziana, Zbigniew;  Schreyer, Hannah;  Weidenthaler, Claudia;  Schueth, Ferdi
收藏  |  浏览/下载:7/0  |  提交时间:2019/11/27