GSTDTAP

浏览/检索结果: 共124条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Effect of Atlantic Sea Surface Temperature in May on Intraseasonal Variability of Eurasian NDVI in Summer 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (9)
作者:  Ji, Liuqing;  Fan, Ke
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/02
sea surface temperature  Atlantic  Eurasia  NDVI  intraseasonal variability  CAM5  
"Warm Arctic-Cold Siberia" as an Internal Mode Instigated by North Atlantic Warming 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (9)
作者:  Jin, Chunhan;  Wang, Bin;  Yang, Young-Min;  Liu, Jian
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/02
"Warm Arctic-Cold Siberia" pattern  AMO  multi-decadal variations  internal mode of variability  Asian winter monsoon  greenhouse gases forcing  
Recent north magnetic pole acceleration towards Siberia caused by flux lobe elongation 期刊论文
NATURE GEOSCIENCE, 2020, 13 (5)
作者:  Livermore, Philip W.;  Finlay, Christopher C.;  Bayliff, Matthew
收藏  |  浏览/下载:4/0  |  提交时间:2020/05/13
Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Nitzbon, Jan;  Westermann, Sebastian;  Langer, Moritz;  Martin, Leo C. P.;  Strauss, Jens;  Laboor, Sebastian;  BOike, Julia
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/13
East Siberian Arctic inland waters emit mostly contemporary carbon 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Dean, Joshua F.;  Meisel, Ove H.;  Rosco, Melanie Martyn;  Marchesini, Luca Belelli;  Garnett, Mark H.;  Lenderink, Henk;  van Logtestijn, Richard;  Borges, Alberto, V;  Bouillon, Steven;  Lambert, Thibault;  Rockmann, Thomas;  Maximov, Trofim;  Petrov, Roman;  Karsanaev, Sergei;  Aerts, Rien;  van Huissteden, Jacobus;  Vonk, Jorien E.;  Dolman, A. Johannes
收藏  |  浏览/下载:14/0  |  提交时间:2020/05/13
Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (3)
作者:  Kirdyanov, Alexander, V;  Saurer, Matthias;  Siegwolf, Rolf;  Knorre, Anastasia A.;  Prokushkin, Anatoly S.;  (Sidorova), Olga V. Churakova;  Fonti, Marina, V;  Buentgen, Ulf
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/02
active soil layer  boreal forest  permafrost  Siberia  stable isotopes  tree rings  wildfire  
Anthropogenic Effects on Cloud Condensation Nuclei Distribution and Rain Initiation in East Asia 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (2)
作者:  Liu, Chong;  Wang, Tijian;  Rosenfeld, Daniel;  Zhu, Yannian;  Yue, Zhiguo;  Yu, Xing;  Xie, Xiaodong;  Li, Shu;  Zhuang, Bingliang;  Cheng, Tiantao;  Niu, Shengjie
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/02
East Asia  Cloud condensation nuclei  NPP-VIIRS  
Palaeoclimate evidence of vulnerable permafrost during times of low sea ice 期刊论文
NATURE, 2020, 577 (7789) : 221-+
作者:  Vaks, A.;  Mason, A. J.;  Breitenbach, S. F. M.;  Kononov, A. M.;  Osinzev, A. V.;  Rosensaft, M.;  Borshevsky, A.;  Gutareva, O. S.;  Henderson, G. M.
收藏  |  浏览/下载:10/0  |  提交时间:2020/05/13

Climate change in the Arctic is occurring rapidly, and projections suggest the complete loss of summer sea ice by the middle of this century(1). The sensitivity of permanently frozen ground (permafrost) in the Northern Hemisphere to warming is less clear, and its long-term trends are harder to monitor than those of sea ice. Here we use palaeoclimate data to show that Siberian permafrost is robust to warming when Arctic sea ice is present, but vulnerable when it is absent. Uranium-lead chronology of carbonate deposits (speleothems) in a Siberian cave located at the southern edge of continuous permafrost reveals periods in which the overlying ground was not permanently frozen. The speleothem record starts 1.5 million years ago (Ma), a time when greater equator-to-pole heat transport led to a warmer Northern Hemisphere(2). The growth of the speleothems indicates that permafrost at the cave site was absent at that time, becoming more frequent from about 1.35 Ma, as the Northern Hemisphere cooled, and permanent after about 0.4 Ma. This history mirrors that of year-round sea ice in the Arctic Ocean, which was largely absent before about 0.4 Ma (ref.(3)), but continuously present since that date. The robustness of permafrost when sea ice is present, as well as the increased permafrost vulnerability when sea ice is absent, can be explained by changes in both heat and moisture transport. Reduced sea ice may contribute to warming of Arctic air(4-6), which can lead to warming far inland(7). Open Arctic waters also increase the source of moisture and increase autumn snowfall over Siberia, insulating the ground from low winter temperatures(8-10). These processes explain the relationship between an ice-free Arctic and permafrost thawing before 0.4 Ma. If these processes continue during modern climate change, future loss of summer Arctic sea ice will accelerate the thawing of Siberian permafrost.


  
Long-Term Changes in the Northern Midwinter Middle Atmosphere in Relation to the Quasi-Biennial Oscillation 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (24) : 13914-13942
作者:  Gabriel, A.
收藏  |  浏览/下载:7/0  |  提交时间:2020/02/17
Trends and QBO  Middle Atmosphere  
Impact of Arctic amplification on declining spring dust events in East Asia 期刊论文
CLIMATE DYNAMICS, 2019
作者:  Liu, Jun;  Wu, Dongyou;  Liu, Guangjing;  Mao, Rui;  Chen, Siyu;  Ji, Mingxia;  Fu, Pingqing;  Sun, Yele;  Pan, Xiaole;  Jin, Hongchun;  Zhou, Yubin;  Wang, Xin
收藏  |  浏览/下载:16/0  |  提交时间:2020/02/17
Dust event occurrences  Dust index  Arctic amplification  Temperature gradient  Future prediction