GSTDTAP

浏览/检索结果: 共79条,第1-10条 帮助

限定条件                
已选(0)清除 条数/页:   排序方式:
Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (29) : 17084-17093
作者:  Chiarenza, Alfio Alessandro;  Farnsworth, Alexander;  Mannion, Philip D.;  Lunt, Daniel J.;  Valdes, Paul J.;  Morgan, Joanna, V;  Allison, Peter A.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/06
Dinosauria  extinction  end-Cretaceous  Chicxulub  Deccan  
Identifying airborne transmission as the dominant route for the spread of COVID-19 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (26) : 14857-14863
作者:  Zhang, Renyi;  Li, Yixin;  Zhang, Annie L.;  Wang, Yuan;  Molina, Mario J.
收藏  |  浏览/下载:12/0  |  提交时间:2020/06/16
COVID-19  virus  aerosol  public health  pandemic  
Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Wang, Junfeng;  Li, Jingyi;  Ye, Jianhuai;  Zhao, Jian;  Wu, Yangzhou;  Hu, Jianlin;  Liu, Dantong;  Nie, Dongyang;  Shen, Fuzhen;  Huang, Xiangpeng;  Huang, Dan Dan;  Ji, Dongsheng;  Sun, Xu;  Xu, Weiqi;  Guo, Jianping;  Song, Shaojie;  Qin, Yiming;  Liu, Pengfei;  Turner, Jay R.;  Lee, Hyun Chul;  Hwang, Sungwoo;  Liao, Hong;  Martin, Scot T.;  Zhang, Qi;  Chen, Mindong;  Sun, Yele;  Ge, Xinlei;  Jacob, Daniel J.
收藏  |  浏览/下载:18/0  |  提交时间:2020/06/09
Carbenium ion-mediated oligomerization of methylglyoxal for secondary organic aerosol formation 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (24) : 13294-13299
作者:  Ji, Yuemen;  Shi, Qiuju;  Li, Yixin;  An, Taicheng;  Zheng, Jun;  Peng, Jianfei;  Gao, Yanpeng;  Chen, Jiangyao;  Li, Guiying;  Wang, Yuan;  Zhang, Fang;  Zhang, Annie L.;  Zhao, Jiayun;  Molina, Mario J.;  Zhang, Renyi
收藏  |  浏览/下载:16/0  |  提交时间:2020/06/09
secondary organic aerosol  aqueous  oligomerization  brown carbon  cationic  
Airborne bacteria confirm the pristine nature of the Southern Ocean boundary layer 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (24) : 13275-13282
作者:  Uetake, Jun;  Hill, Thomas C. J.;  Moore, Kathryn A.;  DeMott, Paul J.;  Protat, Alain;  Kreidenweis, Sonia M.
收藏  |  浏览/下载:15/0  |  提交时间:2020/06/09
bioaerosol  marine aerosol  Southern Ocean  
Mitigation of Arctic permafrost carbon loss through stratospheric aerosol geoengineering 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Chen, Yating;  Liu, Aobo;  Moore, John C.
收藏  |  浏览/下载:5/0  |  提交时间:2020/05/20
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation 期刊论文
NATURE, 2020, 581 (7807) : 184-+
作者:  Liang, Guanxiang;  Zhao, Chunyu;  Zhang, Huanjia;  Mattei, Lisa;  Sherrill-Mix, Scott;  Bittinger, Kyle;  Kessler, Lyanna R.;  Wu, Gary D.;  Baldassano, Robert N.;  DeRusso, Patricia;  Ford, Eileen;  Elovitz, Michal A.;  Kelly, Matthew S.;  Patel, Mohamed Z.;  Mazhani, Tiny;  Gerber, Jeffrey S.;  Kelly, Andrea;  Zemel, Babette S.;  Bushman, Frederic D.
收藏  |  浏览/下载:17/0  |  提交时间:2020/05/20

A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog(1,2), but how it occurs in cities is often puzzling(3). If the growth rates of urban particles are similar to those found in cleaner environments (1-10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below -15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid-base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms(4,5).


  
Large mass-independent sulphur isotope anomalies link stratospheric volcanism to the Late Ordovician mass extinction 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Hu, Dongping;  Li, Menghan;  Zhang, Xiaolin;  Turchyn, Alexandra V.;  Gong, Yizhe;  Shen, Yanan
收藏  |  浏览/下载:13/0  |  提交时间:2020/05/13
Aerosol-photolysis interaction reduces particulate matter during wintertime haze events 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (18) : 9755-9761
作者:  Wu, Jiarui;  Bei, Naifang;  Hu, Bo;  Liu, Suixin;  Wang, Yuan;  Shen, Zhenxing;  Li, Xia;  Liu, Lang;  Wang, Ruonan;  Liu, Zirui;  Cao, Junji;  Tie, Xuexi;  Molina, Luisa T.;  Li, Guohui
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/13
particulate pollution  aerosol-radiation interaction  aerosol-photolysis interaction  
Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals 期刊论文
NATURE, 2020
作者:  Grishin, Evgeni;  Malamud, Uri;  Perets, Hagai B.;  Wandel, Oliver;  Schaefer, Christoph M.
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

The ongoing outbreak of coronavirus disease 2019 (COVID-19) has spread rapidly on a global scale. Although it is clear that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted through human respiratory droplets and direct contact, the potential for aerosol transmission is poorly understood(1-3). Here we investigated the aerodynamic nature of SARS-CoV-2 by measuring viral RNA in aerosols in different areas of two Wuhan hospitals during the outbreak of COVID-19 in February and March 2020. The concentration of SARS-CoV-2 RNA in aerosols that was detected in isolation wards and ventilated patient rooms was very low, but it was higher in the toilet areas used by the patients. Levels of airborne SARS-CoV-2 RNA in the most public areas was undetectable, except in two areas that were prone to crowding  this increase was possibly due to individuals infected with SARS-CoV-2 in the crowd. We found that some medical staff areas initially had high concentrations of viral RNA with aerosol size distributions that showed peaks in the submicrometre and/or supermicrometre regions  however, these levels were reduced to undetectable levels after implementation of rigorous sanitization procedures. Although we have not established the infectivity of the virus detected in these hospital areas, we propose that SARS-CoV-2 may have the potential to be transmitted through aerosols. Our results indicate that room ventilation, open space, sanitization of protective apparel, and proper use and disinfection of toilet areas can effectively limit the concentration of SARS-CoV-2 RNA in aerosols. Future work should explore the infectivity of aerosolized virus.


Aerodynamic analysis of SARS-CoV-2 RNA in two hospitals in Wuhan indicates that SARS-CoV-2 may have the potential to be transmitted through aerosols, although the infectivity of the virus RNA was not established in this study.