GSTDTAP

浏览/检索结果: 共40条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming 期刊论文
NATURE GEOSCIENCE, 2020
作者:  Keuper, Frida;  Wild, Birgit;  Kummu, Matti;  Beer, Christian;  Blume-Werry, Gesche;  Fontaine, Sebastien;  Gavazov, Konstantin;  Gentsch, Norman;  Guggenberger, Georg;  Hugelius, Gustaf;  Jalava, Mika;  Koven, Charles;  Krab, Eveline J.;  Kuhry, Peter;  Monteux, Sylvain;  Richter, Andreas;  Shahzad, Tanvir;  Weedon, James T.;  Dorrepaal, Ellen
收藏  |  浏览/下载:12/0  |  提交时间:2020/08/09
Contactless probing of polycrystalline methane hydrate at pore scale suggests weaker tensile properties than thought 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Atig, Dyhia;  Broseta, Daniel;  Pereira, Jean-Michel;  Brown, Ross
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/09
Progressive nitrogen limitation across the Tibetan alpine permafrost region 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Kou, Dan;  Yang, Guibiao;  Li, Fei;  Feng, Xuehui;  Zhang, Dianye;  Mao, Chao;  Zhang, Qiwen;  Peng, Yunfeng;  Ji, Chengjun;  Zhu, Qiuan;  Fang, Yunting;  Liu, Xueyan;  Xu-Ri;  Li, Siqi;  Deng, Jia;  Zheng, Xunhua;  Fang, Jingyun;  Yang, Yuanhe
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/06
The age distribution of global soil carbon inferred from radiocarbon measurements 期刊论文
NATURE GEOSCIENCE, 2020
作者:  Shi, Zheng;  Allison, Steven D.;  He, Yujie;  Levine, Paul A.;  Hoyt, Alison M.;  Beem-Miller, Jeffrey;  Zhu, Qing;  Wieder, William R.;  Trumbore, Susan;  Randerson, James T.
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/06
Mitigation of Arctic permafrost carbon loss through stratospheric aerosol geoengineering 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Chen, Yating;  Liu, Aobo;  Moore, John C.
收藏  |  浏览/下载:5/0  |  提交时间:2020/05/20
Significant methane ebullition from alpine permafrost rivers on the East Qinghai-Tibet Plateau 期刊论文
NATURE GEOSCIENCE, 2020, 13 (5)
作者:  Zhang, Liwei;  Xia, Xinghui;  Liu, Shaoda;  Zhang, Sibo;  Li, Siling;  Wang, Junfeng;  Wang, Gongqin;  Gao, Hui;  Zhang, Zhenrui;  Wang, Qingrui;  Wen, Wu;  Liu, Ran;  Yang, Zhifeng;  Stanley, Emily H.;  Raymond, Peter A.
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/13
Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Nitzbon, Jan;  Westermann, Sebastian;  Langer, Moritz;  Martin, Leo C. P.;  Strauss, Jens;  Laboor, Sebastian;  BOike, Julia
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/13
East Siberian Arctic inland waters emit mostly contemporary carbon 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Dean, Joshua F.;  Meisel, Ove H.;  Rosco, Melanie Martyn;  Marchesini, Luca Belelli;  Garnett, Mark H.;  Lenderink, Henk;  van Logtestijn, Richard;  Borges, Alberto, V;  Bouillon, Steven;  Lambert, Thibault;  Rockmann, Thomas;  Maximov, Trofim;  Petrov, Roman;  Karsanaev, Sergei;  Aerts, Rien;  van Huissteden, Jacobus;  Vonk, Jorien E.;  Dolman, A. Johannes
收藏  |  浏览/下载:14/0  |  提交时间:2020/05/13
Groundwater as a major source of dissolved organic matter to Arctic coastal waters 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Connolly, Craig T.;  Cardenas, M. Bayani;  Burkart, Greta A.;  Spencer, Robert G. M.;  McClelland, James W.
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
Preindustrial (CH4)-C-14 indicates greater anthropogenic fossil CH4 emissions 期刊论文
NATURE, 2020, 578 (7795) : 409-+
作者:  Keener, Megan;  Hunt, Camden;  Carroll, Timothy G.;  Kampel, Vladimir;  Dobrovetsky, Roman;  Hayton, Trevor W.;  Menard, Gabriel
收藏  |  浏览/下载:25/0  |  提交时间:2020/05/13

Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era(1). Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate(2,3). Carbon-14 in CH4 ((CH4)-C-14) can be used to distinguish between fossil (C-14-free) CH4 emissions and contemporaneous biogenic sources  however, poorly constrained direct (CH4)-C-14 emissions from nuclear reactors have complicated this approach since the middle of the 20th century(4,5). Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year)(2,3) between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate  emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year(6,7). Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago(8), but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core (CH4)-C-14 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)-an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions(9,10).


Isotopic evidence from ice cores indicates that preindustrial-era geological methane emissions were lower than previously thought, suggesting that present-day emissions of methane from fossil fuels are underestimated.