GSTDTAP

浏览/检索结果: 共64条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
A history of pore water oxygen isotope evolution in the Cretaceous Travis Peak Formation in East Texas 期刊论文
GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2020, 132 (7-8) : 1626-1638
作者:  Denny, Adam C.;  Fall, Andras;  Orland, Ian J.;  Valley, John W.;  Eichhubl, Peter;  Laubach, Stephen E.
收藏  |  浏览/下载:5/0  |  提交时间:2020/08/18
Understanding rate effects in injection-induced earthquakes 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Alghannam, Maryam;  Juanes, Ruben
收藏  |  浏览/下载:6/0  |  提交时间:2020/06/22
Causal mechanism of injection-induced earthquakes through the M-w 5.5 Pohang earthquake case study 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Yeo, I. W.;  Brown, M. R. M.;  Ge, S.;  Lee, K. K.
收藏  |  浏览/下载:6/0  |  提交时间:2020/06/01
Evidence for a serpentinized plate interface favouring continental subduction 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Zhao, Liang;  Malusa, Marco G.;  Yuan, Huaiyu;  Paul, Anne;  Guillot, Stephane;  Lu, Yang;  Stehly, Laurent;  Solarino, Stefano;  Eva, Elena;  Lu, Gang;  Bodin, Thomas
收藏  |  浏览/下载:6/0  |  提交时间:2020/05/13
Months-long thousand-kilometre-scale wobbling before great subduction earthquakes 期刊论文
NATURE, 2020, 580 (7805) : 628-+
作者:  Son, Hyungmok;  Park, Juliana J.;  Ketterle, Wolfgang;  Jamison, Alan O.
收藏  |  浏览/下载:16/0  |  提交时间:2020/05/13

Observed reversals in GNSS surface motions suggests greatly enhanced slab pull in the months preceding the great subduction earthquakes in Maule (Chile, 2010) and Tohoku-oki (Japan, 2011) of moment magnitudes 8.8 and 9.0.


Megathrust earthquakes are responsible for some of the most devastating natural disasters(1). To better understand the physical mechanisms of earthquake generation, subduction zones worldwide are continuously monitored with geophysical instrumentation. One key strategy is to install stations that record signals from Global Navigation Satellite Systems(2,3) (GNSS), enabling us to track the non-steady surface motion of the subducting and overriding plates before, during and after the largest events(4-6). Here we use a recently developed trajectory modelling approach(7) that is designed to isolate secular tectonic motions from the daily GNSS time series to show that the 2010 Maule, Chile (moment magnitude 8.8) and 2011 Tohoku-oki, Japan (moment magnitude 9.0) earthquakes were preceded by reversals of 4-8 millimetres in surface displacement that lasted several months and spanned thousands of kilometres. Modelling of the surface displacement reversal that occurred before the Tohoku-oki earthquake suggests an initial slow slip followed by a sudden pulldown of the Philippine Sea slab so rapid that it caused a viscoelastic rebound across the whole of Japan. Therefore, to understand better when large earthquakes are imminent, we must consider not only the evolution of plate interface frictional processes but also the dynamic boundary conditions from deeper subduction processes, such as sudden densification of metastable slab.


  
Extreme rainfall triggered the 2018 rift eruption at Kilauea Volcano 期刊论文
NATURE, 2020, 580 (7804) : 491-+
作者:  Cloutier, Richard;  Clement, Alice M.;  Lee, Michael S. Y.;  Noel, Roxanne;  Bechard, Isabelle;  Roy, Vincent;  Long, John A.
收藏  |  浏览/下载:33/0  |  提交时间:2020/05/13

The May 2018 rift intrusion and eruption of Kilauea Volcano, Hawai'  i, represented one of its most extraordinary eruptive sequences in at least 200 years, yet the trigger mechanism remains elusive(1). The event was preceded by several months of anomalously high precipitation. It has been proposed that rainfall can modulate shallow volcanic activity(2,3), but it remains unknown whether it can have impacts at the greater depths associated with magma transport. Here we show that immediately before and during the eruption, infiltration of rainfall into Kilauea Volcano'  s subsurface increased pore pressure at depths of 1 to 3 kilometres by 0.1 to 1 kilopascals, to its highest pressure in almost 50 years. We propose that weakening and mechanical failure of the edifice was driven by changes in pore pressure within the rift zone, prompting opportunistic dyke intrusion and ultimately facilitating the eruption. A precipitation-induced eruption trigger is consistent with the lack of precursory summit inflation, showing that this intrusion-unlike others-was not caused by the forceful intrusion of new magma into the rift zone. Moreover, statistical analysis of historic eruption occurrence suggests that rainfall patterns contribute substantially to the timing and frequency of Kilauea'  s eruptions and intrusions. Thus, volcanic activity can be modulated by extreme rainfall triggering edifice rock failure-a factor that should be considered when assessing volcanic hazards. Notably, the increasingly extreme weather patterns associated with ongoing anthropogenic climate change could increase the potential for rainfall-triggered volcanic phenomena worldwide.


Immediately before and during the eruption of Ki & x304  lauea Volcano in May 2018, anomalously high rainfall increased the pore pressure in the subsurface to its highest level in 50 years, causing weakening and mechanical failure of the edifice.


  
Evaluation of hydrocarbon broaching after subsurface containment failure, Gulf of Mexico 期刊论文
AAPG BULLETIN, 2020, 104 (4) : 845-862
作者:  Bjerstedt, Thomas W.;  Shedd, William W.;  Natter, Michael G.;  Abadie, Pierre B.;  Moridis, George J.;  Reagan, Matthew T.
收藏  |  浏览/下载:6/0  |  提交时间:2020/05/13
Preservation of lateral pressure disequilibrium during the uplift of shale reservoirs 期刊论文
AAPG BULLETIN, 2020, 104 (4) : 825-843
作者:  Xia, Xinyu;  Michael, Eric;  Gao, Yongli
收藏  |  浏览/下载:7/0  |  提交时间:2020/05/13
Liquid flow and control without solid walls 期刊论文
NATURE, 2020, 581 (7806) : 58-+
作者:  Hellmuth, Susanne;  Stemmann, Olaf
收藏  |  浏览/下载:40/0  |  提交时间:2020/07/03

Wall-free liquid channels surrounded by an immiscible magnetic liquid can be used to create liquid circuitry or to transport human blood without damaging the blood cells by moving permanent magnets.


When miniaturizing fluidic circuitry, the solid walls of the fluid channels become increasingly important(1) because they limit the flow rates achievable for a given pressure drop, and they are prone to fouling(2). Approaches for reducing the wall interactions include hydrophobic coatings(3), liquid-infused porous surfaces(4-6), nanoparticle surfactant jamming(7), changes to surface electronic structure(8), electrowetting(9,10), surface tension pinning(11,12) and use of atomically flat channels(13). A better solution may be to avoid the solid walls altogether. Droplet microfluidics and sheath flow achieve this but require continuous flow of the central liquid and the surrounding liquid(1,14). Here we demonstrate an approach in which aqueous liquid channels are surrounded by an immiscible magnetic liquid, both of which are stabilized by a quadrupolar magnetic field. This creates self-healing, non-clogging, anti-fouling and near-frictionless liquid-in-liquid fluidic channels. Manipulation of the field provides flow control, such as valving, splitting, merging and pumping. The latter is achieved by moving permanent magnets that have no physical contact with the liquid channel. We show that this magnetostaltic pumping method can be used to transport whole human blood with very little damage due to shear forces. Haemolysis (rupture of blood cells) is reduced by an order of magnitude compared with traditional peristaltic pumping, in which blood is mechanically squeezed through a plastic tube. Our liquid-in-liquid approach provides new ways to transport delicate liquids, particularly when scaling channels down to the micrometre scale, with no need for high pressures, and could also be used for microfluidic circuitry.


  
Stability of H3O at extreme conditions and implications for the magnetic fields of Uranus and Neptune 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (11) : 5638-5643
作者:  Huang, Peihao;  Liu, Hanyu;  Lv, Jian;  Li, Quan;  Long, Chunhong;  Wang, Yanchao;  Chen, Changfeng;  Hemley, Russell J.;  Ma, Yanming
收藏  |  浏览/下载:9/0  |  提交时间:2020/05/13
planetary science  high-pressure physics  magnetic fields  water