GSTDTAP

浏览/检索结果: 共75条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Water rights shape crop yield and revenue volatility tradeoffs for adaptation in snow dependent systems 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Malek, Keyvan;  Reed, Patrick;  Adam, Jennifer;  Karimi, Tina;  Brady, Michael
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/14
Radiative forcing of anthropogenic aerosols on cirrus clouds using a hybrid ice nucleation scheme 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (13) : 7801-7827
作者:  Zhu, Jialei;  Penner, Joyce E.
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/06
Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms 期刊论文
ATMOSPHERIC RESEARCH, 2020, 236
作者:  Ahmed, Kamal;  Sachindra, D. A.;  Shahid, Shamsuddin;  Iqbal, Zafar;  Nawaz, Nadeem;  Khan, Najeebullah
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/02
General circulation models  Multi-model ensemble  Taylor skill score  Machine learning algorithms  Temperature and precipitation  Pakistan  
Interactions between Moisture and Tropical Convection. Part II: The Convective Coupling of Equatorial Waves 期刊论文
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2020, 77 (5) : 1801-1819
作者:  Wolding, Brandon;  Dias, Juliana;  Kiladis, George;  Maloney, Eric;  Branson, Mark
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/02
Convective adjustment  Convective clouds  Large-scale motions  Waves  atmospheric  Intraseasonal variability  Tropical variability  
Fundamental bounds on the fidelity of sensory cortical coding 期刊论文
NATURE, 2020
作者:  Rempel, S.;  Gati, C.;  Nijland, M.;  Thangaratnarajah, C.;  Karyolaimos, A.;  de Gier, J. W.;  Guskov, A.;  Slotboom, D. J.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

How the brain processes information accurately despite stochastic neural activity is a longstanding question(1). For instance, perception is fundamentally limited by the information that the brain can extract from the noisy dynamics of sensory neurons. Seminal experiments(2,3) suggest that correlated noise in sensory cortical neural ensembles is what limits their coding accuracy(4-6), although how correlated noise affects neural codes remains debated(7-11). Recent theoretical work proposes that how a neural ensemble'  s sensory tuning properties relate statistically to its correlated noise patterns is a greater determinant of coding accuracy than is absolute noise strength(12-14). However, without simultaneous recordings from thousands of cortical neurons with shared sensory inputs, it is unknown whether correlated noise limits coding fidelity. Here we present a 16-beam, two-photon microscope to monitor activity across the mouse primary visual cortex, along with analyses to quantify the information conveyed by large neural ensembles. We found that, in the visual cortex, correlated noise constrained signalling for ensembles with 800-1,300 neurons. Several noise components of the ensemble dynamics grew proportionally to the ensemble size and the encoded visual signals, revealing the predicted information-limiting correlations(12-14). Notably, visual signals were perpendicular to the largest noise mode, which therefore did not limit coding fidelity. The information-limiting noise modes were approximately ten times smaller and concordant with mouse visual acuity(15). Therefore, cortical design principles appear to enhance coding accuracy by restricting around 90% of noise fluctuations to modes that do not limit signalling fidelity, whereas much weaker correlated noise modes inherently bound sensory discrimination.


A microscopy system that enables simultaneous recording from hundreds of neurons in the mouse visual cortex reveals that the brain enhances its coding capacity by representing visual inputs in dimensions perpendicular to correlated noise.


  
Chiral superconductivity in heavy-fermion metal UTe2 期刊论文
NATURE, 2020, 579 (7800) : 523-527
作者:  Chica, Daniel G.;  He, Yihui;  McCall, Kyle M.;  Chung, Duck Young;  Pak, Rahmi O.;  Trimarchi, Giancarlo;  Liu, Zhifu;  De Lurgio, Patrick M.;  Wessels, Bruce W.;  Kanatzidis, Mercouri G.
收藏  |  浏览/下载:45/0  |  提交时间:2020/07/03

Scanning tunnelling microscopy and spectroscopy measurements show chiral edge states inside the superconducting gap of the heavy-fermion superconductor UTe2, indicating the presence of chiral spin-triplet superconductivity.


Spin-triplet superconductors are condensates of electron pairs with spin 1 and an odd-parity wavefunction(1). An interesting manifestation of triplet pairing is the chiral p-wave state, which is topologically non-trivial and provides a natural platform for realizing Majorana edge modes(2,3). However, triplet pairing is rare in solid-state systems and has not been unambiguously identified in any bulk compound so far. Given that pairing is usually mediated by ferromagnetic spin fluctuations, uranium-based heavy-fermion systems containing f-electron elements, which can harbour both strong correlations and magnetism, are considered ideal candidates for realizing spin-triplet superconductivity(4). Here we present scanning tunnelling microscopy studies of the recently discovered heavy-fermion superconductor UTe2, which has a superconducting transition temperature of 1.6 kelvin(5). We find signatures of coexisting Kondo effect and superconductivity that show competing spatial modulations within one unit cell. Scanning tunnelling spectroscopy at step edges reveals signatures of chiral in-gap states, which have been predicted to exist at the boundaries of topological superconductors. Combined with existing data that indicate triplet pairing in UTe2, the presence of chiral states suggests that UTe2 is a strong candidate for chiral-triplet topological superconductivity.


  
Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride 期刊论文
NATURE, 2020, 578 (7793) : 66-+
作者:  Gate, David;  Saligrama, Naresha;  Leventhal, Olivia;  Yang, Andrew C.;  Unger, Michael S.;  Middeldorp, Jinte;  Chen, Kelly;  Lehallier, Benoit;  Channappa, Divya;  De Los Santos, Mark B.;  McBride, Alisha;  Pluvinage, John;  Elahi, Fanny;  Tam, Grace Kyin-Ye;  Kim, Yongha;  Greicius, Michael;  Wagner, Anthony D.;  Aigner, Ludwig;  Galasko, Douglas R.;  Davis, Mark M.;  Wyss-Coray, Tony
收藏  |  浏览/下载:20/0  |  提交时间:2020/07/03

The discovery of superconductivity at 200 kelvin in the hydrogen sulfide system at high pressures(1) demonstrated the potential of hydrogen-rich materials as high-temperature superconductors. Recent theoretical predictions of rare-earth hydrides with hydrogen cages(2,3) and the subsequent synthesis of LaH10 with a superconducting critical temperature (T-c) of 250 kelvin(4,5) have placed these materials on the verge of achieving the long-standing goal of room-temperature superconductivity. Electrical and X-ray diffraction measurements have revealed a weakly pressure-dependent T-c for LaH10 between 137 and 218 gigapascals in a structure that has a face-centred cubic arrangement of lanthanum atoms(5). Here we show that quantum atomic fluctuations stabilize a highly symmetrical Fm (3) over barm crystal structure over this pressure range. The structure is consistent with experimental findings and has a very large electron-phonon coupling constant of 3.5. Although ab initio classical calculations predict that this Fm (3) over barm structure undergoes distortion at pressures below 230 gigapascals(2,3,) yielding a complex energy landscape, the inclusion of quantum effects suggests that it is the true ground-state structure. The agreement between the calculated and experimental Tc values further indicates that this phase is responsible for the superconductivity observed at 250 kelvin. The relevance of quantum fluctuations calls into question many of the crystal structure predictions that have been made for hydrides within a classical approach and that currently guide the experimental quest for room-temperature superconductivity(6-8). Furthermore, we find that quantum effects are crucial for the stabilization of solids with high electron-phonon coupling constants that could otherwise be destabilized by the large electron-phonon interaction(9), thus reducing the pressures required for their synthesis.


  
Hidden similarities in the dynamics of a weakly synchronous marine metapopulation 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (1) : 479-485
作者:  Rogers, Tanya L.;  Munch, Stephan B.
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
synchrony  environmental gradients  time-delay embedding  hierarchical models  Callinectes sapidus  
Condensational and Collisional Growth of Cloud Droplets in a Turbulent Environment 期刊论文
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2020, 77 (1) : 337-353
作者:  Li, Xiang-Yu;  Brandenburg, Axel;  Svensson, Gunilla;  Haugen, Nils E. L.;  Mehlig, Bernhard;  Rogachevskii, Igor
收藏  |  浏览/下载:4/0  |  提交时间:2020/07/02
Cloud droplets  Cloud microphysics  
Heat accumulation on coral reefs mitigated by internal waves 期刊论文
NATURE GEOSCIENCE, 2020, 13 (1) : 28-+
作者:  Wyatt, Alex S. J.;  Leichter, James J.;  Toth, Lauren T.;  Miyajima, Toshihiro;  Aronson, Richard B.;  Nagata, Toshi
收藏  |  浏览/下载:4/0  |  提交时间:2020/07/02