GSTDTAP

浏览/检索结果: 共35条,第1-10条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
Slower nutrient stream suppresses Subarctic Atlantic Ocean biological productivity in global warming 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (27) : 15504-15510
作者:  Whitt, Daniel B.;  Jansen, Malte F.
收藏  |  浏览/下载:194/0  |  提交时间:2020/06/29
ocean circulation  biogeochemistry  global warming  
Mineral dust increases the habitability of terrestrial planets but confounds biomarker detection 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Boutle, Ian A.;  Joshi, Manoj;  Lambert, F. Hugo;  Mayne, Nathan J.;  Lyster, Duncan;  Manners, James;  Ridgway, Robert;  Kohary, Krisztian
收藏  |  浏览/下载:9/0  |  提交时间:2020/06/16
Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018 期刊论文
NATURE, 2020, 581 (7808) : 294-+
作者:  Ibrahim, Nizar;  Maganuco, Simone;  Dal Sasso, Cristiano;  Fabbri, Matteo;  Auditore, Marco;  Bindellini, Gabriele;  Martill, David M.;  Zouhri, Samir;  Mattarelli, Diego A.;  Unwin, David M.;  Wiemann, Jasmina;  Bonadonna, Davide;  Amane, Ayoub;  Jakubczak, Juliana;  Joger, Ulrich;  Lauder, George V.;  Pierce, Stephanie E.
收藏  |  浏览/下载:18/0  |  提交时间:2020/05/25

Warming surface temperatures have driven a substantial reduction in the extent and duration of Northern Hemisphere snow cover(1-3). These changes in snow cover affect Earth'  s climate system via the surface energy budget, and influence freshwater resources across a large proportion of the Northern Hemisphere(4-6). In contrast to snow extent, reliable quantitative knowledge on seasonal snow mass and its trend is lacking(7-9). Here we use the new GlobSnow 3.0 dataset to show that the 1980-2018 annual maximum snow mass in the Northern Hemisphere was, on average, 3,062 +/- 35 billion tonnes (gigatonnes). Our quantification is for March (the month that most closely corresponds to peak snow mass), covers non-alpine regions above 40 degrees N and, crucially, includes a bias correction based on in-field snow observations. We compare our GlobSnow 3.0 estimates with three independent estimates of snow mass, each with and without the bias correction. Across the four datasets, the bias correction decreased the range from 2,433-3,380 gigatonnes (mean 2,867) to 2,846-3,062 gigatonnes (mean 2,938)-a reduction in uncertainty from 33% to 7.4%. On the basis of our bias-corrected GlobSnow 3.0 estimates, we find different continental trends over the 39-year satellite record. For example, snow mass decreased by 46 gigatonnes per decade across North America but had a negligible trend across Eurasia  both continents exhibit high regional variability. Our results enable a better estimation of the role of seasonal snow mass in Earth'  s energy, water and carbon budgets.


Applying a bias correction to a state-of-the-art dataset covering non-alpine regions of the Northern Hemisphere and to three other datasets yields a more constrained quantification of snow mass in March from 1980 to 2018.


  
Representing the function and sensitivity of coastal interfaces in Earth system models 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Ward, Nicholas D.;  Megonigal, J. Patrick;  Bond-Lamberty, Ben;  Bailey, Vanessa L.;  Butman, David;  Canuel, Elizabeth A.;  Diefenderfer, Heida;  Ganju, Neil K.;  Goni, Miguel A.;  Graham, Emily B.;  Hopkinson, Charles S.;  Khangaonkar, Tarang;  Langley, J. Adam;  McDowell, Nate G.;  Myers-Pigg, Allison N.;  Neumann, Rebecca B.;  Osburn, Christopher L.;  Price, Rene M.;  Rowland, Joel;  Sengupta, Aditi;  Simard, Marc;  Thornton, Peter E.;  Tzortziou, Maria;  Vargas, Rodrigo;  Weisenhorn, Pamela B.;  Windham-Myers, Lisamarie
收藏  |  浏览/下载:13/0  |  提交时间:2020/05/20
Mitigation of Arctic permafrost carbon loss through stratospheric aerosol geoengineering 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Chen, Yating;  Liu, Aobo;  Moore, John C.
收藏  |  浏览/下载:5/0  |  提交时间:2020/05/20
Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Jiang, Zihan;  Liu, Hongyan;  Wang, Hongya;  Peng, Jian;  Meersmans, Jeroen;  Green, Sophie M.;  Quine, Timothy A.;  Wu, Xiuchen;  Song, Zhaoliang
收藏  |  浏览/下载:15/0  |  提交时间:2020/05/20
Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Nitzbon, Jan;  Westermann, Sebastian;  Langer, Moritz;  Martin, Leo C. P.;  Strauss, Jens;  Laboor, Sebastian;  BOike, Julia
收藏  |  浏览/下载:12/0  |  提交时间:2020/05/13
Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (15) : 8532-8538
作者:  Trugman, Anna T.;  Anderegg, Leander D. L.;  Shaw, John D.;  Anderegg, William R. L.
收藏  |  浏览/下载:7/0  |  提交时间:2020/05/13
community trait assemblage  drought  forest inventory  mortality  species diversity  
A pause in Southern Hemisphere circulation trends due to the Montreal Protocol 期刊论文
NATURE, 2020, 579 (7800) : 544-548
作者:  Imai, Yu;  Meyer, Kirsten J.;  Iinishi, Akira;  Favre-Godal, Quentin;  Green, Robert;  Manuse, Sylvie;  Caboni, Mariaelena;  Mori, Miho;  Niles, Samantha;  Ghiglieri, Meghan;  Honrao, Chandrashekhar;  Ma, Xiaoyu;  Guo, Jason J.;  Makriyannis, Alexandros;  Linares-Otoya, Luis;  Boehringer, Nils;  Wuisan, Zerlina G.;  Kaur, Hundeep;  Wu, Runrun;  Mateus, Andre
收藏  |  浏览/下载:20/0  |  提交时间:2020/05/13

Observations show robust near-surface trends in Southern Hemisphere tropospheric circulation towards the end of the twentieth century, including a poleward shift in the mid-latitude jet(1,2), a positive trend in the Southern Annular Mode(1,3-6) and an expansion of the Hadley cell(7,8). It has been established that these trends were driven by ozone depletion in the Antarctic stratosphere due to emissions of ozone-depleting substances(9-11). Here we show that these widely reported circulation trends paused, or slightly reversed, around the year 2000. Using a pattern-based detection and attribution analysis of atmospheric zonal wind, we show that the pause in circulation trends is forced by human activities, and has not occurred owing only to internal or natural variability of the climate system. Furthermore, we demonstrate that stratospheric ozone recovery, resulting from the Montreal Protocol, is the key driver of the pause. Because pre-2000 circulation trends have affected precipitation(12-14), and potentially ocean circulation and salinity(15-17), we anticipate that a pause in these trends will have wider impacts on the Earth system. Signatures of the effects of the Montreal Protocol and the associated stratospheric ozone recovery might therefore manifest, or have already manifested, in other aspects of the Earth system.


  
Global conservation of species' niches 期刊论文
NATURE, 2020, 580 (7802) : 232-+
作者:  Guo, Xiaoyan;  Aviles, Giovanni;  Liu, Yi;  Tian, Ruilin;  Unger, Bret A.;  Lin, Yu-Hsiu T.;  Wiita, Arun P.;  Xu, Ke;  Correia, M. Almira;  Kampmann, Martin
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

Environmental change is rapidly accelerating, and many species will need to adapt to survive(1). Ensuring that protected areas cover populations across a broad range of environmental conditions could safeguard the processes that lead to such adaptations(1-3). However, international conservation policies have largely neglected these considerations when setting targets for the expansion of protected areas(4). Here we show that-of 19,937 vertebrate species globally(5-8)-the representation of environmental conditions across their habitats in protected areas (hereafter, niche representation) is inadequate for 4,836 (93.1%) amphibian, 8,653 (89.5%) bird and 4,608 (90.9%) terrestrial mammal species. Expanding existing protected areas to cover these gaps would encompass 33.8% of the total land surface-exceeding the current target of 17% that has been adopted by governments. Priority locations for expanding the system of protected areas to improve niche representation occur in global biodiversity hotspots(9), including Colombia, Papua New Guinea, South Africa and southwest China, as well as across most of the major land masses of the Earth. Conversely, we also show that planning for the expansion of protected areas without explicitly considering environmental conditions would marginally reduce the land area required to 30.7%, but that this would lead to inadequate niche representation for 7,798 (39.1%) species. As the governments of the world prepare to renegotiate global conservation targets, policymakers have the opportunity to help to maintain the adaptive potential of species by considering niche representation within protected areas(1,2).


Protected areas would need to expand to 33.8% of the total land surface to adequately represent environmental conditions across the habitats of amphibians, birds and terrestrial mammals, far exceeding the current 17% target.