GSTDTAP

浏览/检索结果: 共20条,第1-10条 帮助

限定条件            
已选(0)清除 条数/页:   排序方式:
Atmospheric transport is a major pathway of microplastics to remote regions 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Evangeliou, N.;  Grythe, H.;  Klimont, Z.;  Heyes, C.;  Eckhardt, S.;  Lopez-Aparicio, S.;  Stohl, A.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/21
Mitigation of Arctic permafrost carbon loss through stratospheric aerosol geoengineering 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Chen, Yating;  Liu, Aobo;  Moore, John C.
收藏  |  浏览/下载:5/0  |  提交时间:2020/05/20
Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Nitzbon, Jan;  Westermann, Sebastian;  Langer, Moritz;  Martin, Leo C. P.;  Strauss, Jens;  Laboor, Sebastian;  BOike, Julia
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/13
The intensification of Arctic warming as a result of CO2 physiological forcing 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Park, So-Won;  Kim, Jin-Soo;  Kug, Jong-Seong
收藏  |  浏览/下载:7/0  |  提交时间:2020/05/13
Invasive earthworms unlock arctic plant nitrogen limitation 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Blume-Werry, Gesche;  Krab, Eveline J.;  Olofsson, Johan;  Sundqvist, Maja K.;  Vaisanen, Maria;  Klaminder, Jonatan
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/13
East Siberian Arctic inland waters emit mostly contemporary carbon 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Dean, Joshua F.;  Meisel, Ove H.;  Rosco, Melanie Martyn;  Marchesini, Luca Belelli;  Garnett, Mark H.;  Lenderink, Henk;  van Logtestijn, Richard;  Borges, Alberto, V;  Bouillon, Steven;  Lambert, Thibault;  Rockmann, Thomas;  Maximov, Trofim;  Petrov, Roman;  Karsanaev, Sergei;  Aerts, Rien;  van Huissteden, Jacobus;  Vonk, Jorien E.;  Dolman, A. Johannes
收藏  |  浏览/下载:14/0  |  提交时间:2020/05/13
Groundwater as a major source of dissolved organic matter to Arctic coastal waters 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Connolly, Craig T.;  Cardenas, M. Bayani;  Burkart, Greta A.;  Spencer, Robert G. M.;  McClelland, James W.
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
Influence of Arctic sea-ice variability on Pacific trade winds 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (6) : 2824-2834
作者:  Kennel, Charles F.;  Yulaeva, Elena
收藏  |  浏览/下载:6/0  |  提交时间:2020/05/13
Arctic sea ice  decadal variability  Pacific trade winds  Central Pacific El Nino  Aleutian Low  
Palaeoclimate evidence of vulnerable permafrost during times of low sea ice 期刊论文
NATURE, 2020, 577 (7789) : 221-+
作者:  Vaks, A.;  Mason, A. J.;  Breitenbach, S. F. M.;  Kononov, A. M.;  Osinzev, A. V.;  Rosensaft, M.;  Borshevsky, A.;  Gutareva, O. S.;  Henderson, G. M.
收藏  |  浏览/下载:10/0  |  提交时间:2020/05/13

Climate change in the Arctic is occurring rapidly, and projections suggest the complete loss of summer sea ice by the middle of this century(1). The sensitivity of permanently frozen ground (permafrost) in the Northern Hemisphere to warming is less clear, and its long-term trends are harder to monitor than those of sea ice. Here we use palaeoclimate data to show that Siberian permafrost is robust to warming when Arctic sea ice is present, but vulnerable when it is absent. Uranium-lead chronology of carbonate deposits (speleothems) in a Siberian cave located at the southern edge of continuous permafrost reveals periods in which the overlying ground was not permanently frozen. The speleothem record starts 1.5 million years ago (Ma), a time when greater equator-to-pole heat transport led to a warmer Northern Hemisphere(2). The growth of the speleothems indicates that permafrost at the cave site was absent at that time, becoming more frequent from about 1.35 Ma, as the Northern Hemisphere cooled, and permanent after about 0.4 Ma. This history mirrors that of year-round sea ice in the Arctic Ocean, which was largely absent before about 0.4 Ma (ref.(3)), but continuously present since that date. The robustness of permafrost when sea ice is present, as well as the increased permafrost vulnerability when sea ice is absent, can be explained by changes in both heat and moisture transport. Reduced sea ice may contribute to warming of Arctic air(4-6), which can lead to warming far inland(7). Open Arctic waters also increase the source of moisture and increase autumn snowfall over Siberia, insulating the ground from low winter temperatures(8-10). These processes explain the relationship between an ice-free Arctic and permafrost thawing before 0.4 Ma. If these processes continue during modern climate change, future loss of summer Arctic sea ice will accelerate the thawing of Siberian permafrost.


  
Proglacial freshwaters are significant and previously unrecognized sinks of atmospheric CO2 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (36) : 17690-17695
作者:  St Pierre, Kyra A.;  St Louis, Vincent L.;  Schiff, Sherry L.;  Lehnherr, Igor;  Dainard, Paul G.;  Gardner, Alex S.;  Aukes, Pieter J. K.;  Sharp, Martin J.
收藏  |  浏览/下载:7/0  |  提交时间:2019/11/27
glacial meltwaters  carbon  biogeochemistry  freshwater