GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Structures of human pannexin 1 reveal ion pathways and mechanism of gating 期刊论文
NATURE, 2020
作者:  Krause, David W.;  Hoffmann, Simone;  Hu, Yaoming;  Wible, John R.;  Rougier, Guillermo W.;  Kirk, E. Christopher;  Groenke, Joseph R.;  Rogers, Raymond R.;  Rossie, James B.;  Schultz, Julia A.;  Evans, Alistair R.;  von Koenigswald, Wighart;  Rahantarisoa, Lydia J.
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

Cryo-electron microscopy structures of the ATP-permeable channel pannexin 1 reveal a gating mechanism involving multiple distinct ion-conducting pathways.


Pannexin 1 (PANX1) is an ATP-permeable channel with critical roles in a variety of physiological functions such as blood pressure regulation(1), apoptotic cell clearance(2) and human oocyte development(3). Here we present several structures of human PANX1 in a heptameric assembly at resolutions of up to 2.8 angstrom, including an apo state, a caspase-7-cleaved state and a carbenoxolone-bound state. We reveal a gating mechanism that involves two ion-conducting pathways. Under normal cellular conditions, the intracellular entry of the wide main pore is physically plugged by the C-terminal tail. Small anions are conducted through narrow tunnels in the intracellular domain. These tunnels connect to the main pore and are gated by a long linker between the N-terminal helix and the first transmembrane helix. During apoptosis, the C-terminal tail is cleaved by caspase, allowing the release of ATP through the main pore. We identified a carbenoxolone-binding site embraced by W74 in the extracellular entrance and a role for carbenoxolone as a channel blocker. We identified a gap-junction-like structure using a glycosylation-deficient mutant, N255A. Our studies provide a solid foundation for understanding the molecular mechanisms underlying the channel gating and inhibition of PANX1 and related large-pore channels.


  
A Classification of Streamflow Patterns Across the Coastal Gulf of Alaska 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (2)
作者:  Sergeant, Christopher J.;  Falke, Jeffrey A.;  Bellmore, Rebecca A.;  Bellmore, J. Ryan;  Crumley, Ryan L.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
flow regime  fuzzy classification  AutoClass  Alaska  discharge  coastal watersheds  
Novel tau filament fold in corticobasal degeneration 期刊论文
NATURE, 2020, 580 (7802) : 283-+
作者:  Izumi, Natsuko;  Shoji, Keisuke;  Suzuki, Yutaka;  Katsuma, Susumu;  Tomari, Yukihide
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

Cyro-electron microscopy of tau filaments from people with corticobasal degeneration reveals a previously unseen four-layered fold, distinct from the filament structures seen in Alzheimer'  s disease, Pick'  s disease and chronic traumatic encephalopathy.


Corticobasal degeneration (CBD) is a neurodegenerative tauopathy-a class of disorders in which the tau protein forms insoluble inclusions in the brain-that is characterized by motor and cognitive disturbances(1-3). The H1 haplotype of MAPT (the tau gene) is present in cases of CBD at a higher frequency than in controls(4,5), and genome-wide association studies have identified additional risk factors(6). By histology, astrocytic plaques are diagnostic of CBD7,8  by SDS-PAGE, so too are detergent-insoluble, 37 kDa fragments of tau(9). Like progressive supranuclear palsy, globular glial tauopathy and argyrophilic grain disease(10), CBD is characterized by abundant filamentous tau inclusions that are made of isoforms with four microtubule-binding repeats(11-15). This distinguishes such '  4R'  tauopathies from Pick'  s disease (the filaments of which are made of three-repeat (3R) tau isoforms) and from Alzheimer'  s disease and chronic traumatic encephalopathy (CTE) (in which both 3R and 4R isoforms are found in the filaments)(16). Here we use cryo-electron microscopy to analyse the structures of tau filaments extracted from the brains of three individuals with CBD. These filaments were identical between cases, but distinct from those seen in Alzheimer'  s disease, Pick'  s disease and CTE17-19. The core of a CBD filament comprises residues lysine 274 to glutamate 380 of tau, spanning the last residue of the R1 repeat, the whole of the R2, R3 and R4 repeats, and 12 amino acids after R4. The core adopts a previously unseen four-layered fold, which encloses a large nonproteinaceous density. This density is surrounded by the side chains of lysine residues 290 and 294 from R2 and lysine 370 from the sequence after R4.