GSTDTAP

浏览/检索结果: 共12条,第1-10条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
Impacts of hydrothermal plume processes on oceanic metal cycles and transport 期刊论文
NATURE GEOSCIENCE, 2020, 13 (6) : 396-402
作者:  Gartman, Amy;  Findlay, Alyssa J.
收藏  |  浏览/下载:10/0  |  提交时间:2020/06/09
Nitric Oxide Abundance in the Martian Thermosphere and Its Diurnal Variation 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (9)
作者:  Cui, J.;  Fu, M-H;  Ren, Z-P;  Gu, H.;  Guo, J-H;  Wu, X-S;  Wu, Z-P;  Lai, H-R;  Wei, Y.
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/02
nitric oxide  Mars  diurnal variation  Mass spectrometer  thermosphere  
Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites 期刊论文
NATURE, 2020, 580 (7803) : 360-+
作者:  van den Brink, Susanne C.;  Alemany, Anna;  van Batenburg, Vincent;  Moris, Naomi;  Blotenburg, Marloes;  Vivie, Judith;  Baillie-Johnson, Peter;  Nichols, Jennifer;  Sonnen, Katharina F.;  Arias, Alfonso;  van Oudenaarden, Alexander
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

Halide perovskite materials have promising performance characteristics for low-cost optoelectronic applications. Photovoltaic devices fabricated from perovskite absorbers have reached power conversion efficiencies above 25 per cent in single-junction devices and 28 per cent in tandem devices(1,2). This strong performance (albeit below the practical limits of about 30 per cent and 35 per cent, respectively(3)) is surprising in thin films processed from solution at low-temperature, a method that generally produces abundant crystalline defects(4). Although point defects often induce only shallow electronic states in the perovskite bandgap that do not affect performance(5), perovskite devices still have many states deep within the bandgap that trap charge carriers and cause them to recombine non-radiatively. These deep trap states thus induce local variations in photoluminescence and limit the device performance(6). The origin and distribution of these trap states are unknown, but they have been associated with light-induced halide segregation in mixed-halide perovskite compositions(7) and with local strain(8), both of which make devices less stable(9). Here we use photoemission electron microscopy to image the trap distribution in state-of-the-art halide perovskite films. Instead of a relatively uniform distribution within regions of poor photoluminescence efficiency, we observe discrete, nanoscale trap clusters. By correlating microscopy measurements with scanning electron analytical techniques, we find that these trap clusters appear at the interfaces between crystallographically and compositionally distinct entities. Finally, by generating time-resolved photoemission sequences of the photo-excited carrier trapping process(10,11), we reveal a hole-trapping character with the kinetics limited by diffusion of holes to the local trap clusters. Our approach shows that managing structure and composition on the nanoscale will be essential for optimal performance of halide perovskite devices.


  
Rapid Formation of Clathrate Hydrate From Liquid Ethane and Water Ice on Titan 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (4)
作者:  Vu, T. H.;  Choukroun, M.;  Sotin, C.;  Munoz-Iglesias, V;  Maynard-Casely, H. E.
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/02
An Experimental Assessment of the Importance of S(IV) Oxidation by Hypohalous Acids in the Marine Atmosphere 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (4)
作者:  Liu, Tengyu;  Abbatt, Jonathan P. D.
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/02
Observations of grain-boundary phase transformations in an elemental metal 期刊论文
NATURE, 2020, 579 (7799) : 375-+
作者:  Valente, Luis;  Phillimore, Albert B.;  Melo, Martim;  Warren, Ben H.;  Clegg, Sonya M.;  Havenstein, Katja;  Tiedemann, Ralph;  Illera, Juan Carlos;  Thebaud, Christophe;  Aschenbach, Tina;  Etienne, Rampal S.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

Atomic-resolution observations combined with simulations show that grain boundaries within elemental copper undergo temperature-induced solid-state phase transformation to different structures  grain boundary phases can also coexist and are kinetically trapped structures.


The theory of grain boundary (the interface between crystallites, GB) structure has a long history(1) and the concept of GBs undergoing phase transformations was proposed 50 years ago(2,3). The underlying assumption was that multiple stable and metastable states exist for different GB orientations(4-6). The terminology '  complexion'  was recently proposed to distinguish between interfacial states that differ in any equilibrium thermodynamic property(7). Different types of complexion and transitions between complexions have been characterized, mostly in binary or multicomponent systems(8-19). Simulations have provided insight into the phase behaviour of interfaces and shown that GB transitions can occur in many material systems(20-24). However, the direct experimental observation and transformation kinetics of GBs in an elemental metal have remained elusive. Here we demonstrate atomic-scale GB phase coexistence and transformations at symmetric and asymmetric [111 over bar ] tilt GBs in elemental copper. Atomic-resolution imaging reveals the coexistence of two different structures at sigma 19b GBs (where sigma 19 is the density of coincident sites and b is a GB variant), in agreement with evolutionary GB structure search and clustering analysis(21,25,26). We also use finite-temperature molecular dynamics simulations to explore the coexistence and transformation kinetics of these GB phases. Our results demonstrate how GB phases can be kinetically trapped, enabling atomic-scale room-temperature observations. Our work paves the way for atomic-scale in situ studies of metallic GB phase transformations, which were previously detected only indirectly(9,15,27-29), through their influence on abnormal grain growth, non-Arrhenius-type diffusion or liquid metal embrittlement.


  
Gas Flow by Invasion Percolation Through the Hydrate Stability Zone 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (3)
作者:  Meyer, Dylan W.;  Flemings, Peter B.;  You, Kehua;  Dicarlo, David A.
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/02
Thiolated arsenic species observed in rice paddy pore waters 期刊论文
NATURE GEOSCIENCE, 2020, 13 (4) : 282-+
作者:  Wang, Jiajia;  Kerl, Carolin F.;  Hu, Pengjie;  Martin, Maria;  Mu, Tingting;  Brueggenwirth, Lena;  Wu, Guangmei;  Said-Pullicino, Daniel;  Romani, Marco;  Wu, Longhua;  Planer-Friedrich, Britta
收藏  |  浏览/下载:5/0  |  提交时间:2020/05/13
In situ NMR metrology reveals reaction mechanisms in redox flow batteries 期刊论文
NATURE, 2020, 579 (7798) : 224-+
作者:  Ma, Jianfei;  You, Xin;  Sun, Shan;  Wang, Xiaoxiao;  Qin, Song;  Sui, Sen-Fang
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

Large-scale energy storage is becoming increasingly critical to balancing renewable energy production and consumption(1). Organic redox flow batteries, made from inexpensive and sustainable redox-active materials, are promising storage technologies that are cheaper and less environmentally hazardous than vanadium-based batteries, but they have shorter lifetimes and lower energy density(2,3). Thus, fundamental insight at the molecular level is required to improve performance(4,5). Here we report two in situ nuclear magnetic resonance (NMR) methods of studying redox flow batteries, which are applied to two redox-active electrolytes: 2,6-dihydroxyanthraquinone (DHAQ) and 4,4 '  -((9,10-anthraquinone-2,6-diyl)dioxy) dibutyrate (DBEAQ). In the first method, we monitor the changes in the H-1 NMR shift of the liquid electrolyte as it flows out of the electrochemical cell. In the second method, we observe the changes that occur simultaneously in the positive and negative electrodes in the full electrochemical cell. Using the bulk magnetization changes (observed via the H-1 NMR shift of the water resonance) and the line broadening of the H-1 shifts of the quinone resonances as a function of the state of charge, we measure the potential differences of the two single-electron couples, identify and quantify the rate of electron transfer between the reduced and oxidized species, and determine the extent of electron delocalization of the unpaired spins over the radical anions. These NMR techniques enable electrolyte decomposition and battery self-discharge to be explored in real time, and show that DHAQ is decomposed electrochemically via a reaction that can be minimized by limiting the voltage used on charging. We foresee applications of these NMR methods in understanding a wide range of redox processes in flow and other electrochemical systems.


  
Slab weakening during the olivine to ringwoodite transition in the mantle 期刊论文
NATURE GEOSCIENCE, 2020, 13 (2) : 170-+
作者:  Mohiuddin, Anwar;  Karato, Shun-ichiro;  Girard, Jennifer
收藏  |  浏览/下载:2/0  |  提交时间:2020/05/13