GSTDTAP  > 地球科学
DOI10.2172/1259701
报告编号DOE--Clemson-10832
来源IDOSTI ID: 1259701
Exploratory Project: Rigid nanostructured organic polymer monolith for in situ collection and analysis of plant metabolites from soil matrices
Tharayil, Nishanth
2016-06-29
出版年2016
页数14
语种英语
国家美国
领域地球科学
英文摘要Plant metabolites released from litter leachates and root exudates enable plants to adapt and survive in a wide range of habitats by facilitating resource foraging and plant-organismal interactions, and could influence soil carbon storage. The biological functions of these plant inputs and the organismal interactions they facilitate in soil are strictly governed by their composition and molecular identity. Our current understanding about the molecular identity of exudates is based on physiological studies that are done in soil-less axenic cultures. On the other hand, ecological studies that rely on isotope labeling to track the fluxes of carbon from plants to soil have found the complexities of soil-microbe matrices as an insurmountable barrier to undertake any meaningful molecular level characterization of plant inputs. Although it is constantly advocated to undertake a molecular level identification of the dynamicity of plant metabolites in soils, the complexity of soil system has thus far prevented any such endeavors. We developed polymeric probes through in-situ polymerization of poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) to elucidate the chemical environment of the soil to which the plant roots are exposed. Hypercrosslinking of the polymeric probes through an in-situ Friedel-Crafts alkylation significantly increased the surface area and the sorption capacity of the probes. Surface functionalization of the probes using a hybrid approach was also attempted. The efficacy of these probes was tested using batch equilibration. Scanning electron microscopy revealed extensive modification of the surface of the probes through hypercrosslinking. The probes exhibited a lower site specific sorption (slope of Freundlich adsorption isotherm close to unity) and percent recovery of the sorbed compounds from the probes were >70, indicating a predominance of reversible sorption. Further we imparted specificity to this copolymer matrix by using molecular-template imprinting approach for the selective capture of less abundant plant metabolites from a crowded soil/litter leachate. Our results suggests that i) the root exudate pattern of plants is highly dependent on the nutrient status of the plant, with greater specificity of root exudation occurring in growing medium with low available form of nutrients, ii) the chemical composition of root exudation is a function of the distance of sampling from the source-roots, with the composition of root exudation being more enriched in polar metabolites farther from the source-roots, iii) Further we demonstrated that the compounds present in real root exudates diffuse farther from the source roots than those in artificial root exudates that are traditionally used. Thus, our project highlights how the soil matrix is instrumental in modifying the chemical composition of root exudates, and highlights that, apart from the plant physiology, the specificity and function of root exudates is also modified by environmental factors.
英文关键词root exudates soil carbon
URL查看原文
来源平台US Department of Energy (DOE)
引用统计
文献类型科技报告
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/7223
专题地球科学
推荐引用方式
GB/T 7714
Tharayil, Nishanth. Exploratory Project: Rigid nanostructured organic polymer monolith for in situ collection and analysis of plant metabolites from soil matrices,2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tharayil, Nishanth]的文章
百度学术
百度学术中相似的文章
[Tharayil, Nishanth]的文章
必应学术
必应学术中相似的文章
[Tharayil, Nishanth]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。