GSTDTAP  > 地球科学
DOI10.2172/1211575
报告编号DOE-UIC--0001730-1
来源IDOSTI ID: 1211575
Final Technical Report: Mercury Release from Organic Matter (OM) and OM-Coated Mineral Surfaces
Nagy, Kathryn L.
2015-08-18
出版年2015
页数5
语种英语
国家美国
领域地球科学
英文摘要Chemical reactions between mercury, a neurotoxin, and sulfur, an essential nutrient, in the environment control to a large extent the distribution and amount of mercury available for uptake by living organisms. The largest reservoir of sulfur in soils is in living, decaying, and dissolved natural organic matter. The decaying and dissolved organic matter can also coat the surfaces of minerals in the soil. Mercury (as a divalent cation) can bind to the sulfur species in the organic matter as well as to the bare mineral surfaces, but the extent of binding and release of this mercury is not well understood. The goals of the research were to investigate fundamental relationships among mercury, natural organic matter, and selected minerals to better understand specifically the fate and transport of mercury in contaminated soils downstream from the Y-12 plant along East Fork Poplar Creek, Tennessee, and more generally in any contaminated soil. The research focused on (1) experiments to quantify the uptake and release of mercury from two clay minerals in the soil, kaolinite and vermiculite, in the presence and absence of dissolved organic matter; (2) release of mercury from cinnabar under oxic and anoxic conditions; (3) characterization of the forms of mercury in the soil using synchrotron X-ray absorption spectroscopic techniques; and, (4) determination of molecular forms of mercury in the presence of natural organic matter. We also leveraged funding from the National Science Foundation to (5) evaluate published approaches for determining sulfur speciation in natural organic matter by fitting X-ray Absorption Near Edge Structure (XANES) spectra obtained at the sulfur K-edge and apply optimized fitting schemes to new measurements of sulfur speciation in a suite of dissolved organic matter samples from the International Humic Substances Society. Lastly, in collaboration with researchers at the University of Colorado and the U.S. Geological Survey in Boulder, Colorado, (6) we investigated the biogeochemical controls on the release of mercury in simulated flooding experiments using loose soils and intact soil cores from East Fork Poplar Creek.
英文关键词Mercury, natural organic matter, kaolinite, vermiculite, cinnabar, metacinnabar, soil
URL查看原文
来源平台US Department of Energy (DOE)
引用统计
文献类型科技报告
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/6918
专题地球科学
推荐引用方式
GB/T 7714
Nagy, Kathryn L.. Final Technical Report: Mercury Release from Organic Matter (OM) and OM-Coated Mineral Surfaces,2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nagy, Kathryn L.]的文章
百度学术
百度学术中相似的文章
[Nagy, Kathryn L.]的文章
必应学术
必应学术中相似的文章
[Nagy, Kathryn L.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。