GSTDTAP  > 地球科学
DOI10.2172/1110400
报告编号DOE-CU-Denver-0006962-01
来源IDOSTI ID: 1110400
Linking deposit morphology and clogging in subsurface remediation: Final Technical Report
Mays, David C. [University of Colorado Denver]
2013-12-11
出版年2013
语种英语
国家美国
领域地球科学
英文摘要Groundwater is a crucial resource for water supply, especially in arid and semiarid areas of the United States west of the 100th meridian. Accordingly, remediation of contaminated groundwater is an important application of science and technology, particularly for the U.S. Department of Energy (DOE), which oversees a number of groundwater remediation sites from Cold War era mining. Groundwater remediation is complex, because it depends on identifying, locating, and treating contaminants in the subsurface, where remediation reactions depend on interacting geological, hydrological, geochemical, and microbiological factors. Within this context, permeability is a fundamental concept, because it controls the rates and pathways of groundwater flow. Colloid science is intimately related to permeability, because when colloids are present (particles with equivalent diameters between 1 nanometer and 10 micrometers), changes in hydrological or geochemical conditions can trigger a detrimental reduction in permeability called clogging. Accordingly, clogging is a major concern in groundwater remediation. Several lines of evidence suggest that clogging by colloids depends on (1) colloid deposition, and (2) deposit morphology, that is, the structure of colloid deposits, which can be quantified as a fractal dimension. This report describes research, performed under a 2-year, exploratory grant from the DOE’s Subsurface Biogeochemical Research (SBR) program. This research employed a novel laboratory technique to simultaneously measure flow, colloid deposition, deposit morphology, and permeability in a flow cell, and also collected field samples from wells at the DOE’s Old Rifle remediation site. Field results indicate that suspended solids at the Old Rifle site have fractal structures. Laboratory results indicate that clogging is associated with colloid deposits with smaller fractal dimensions, in accordance with previous studies on initially clean granular media. Preliminary modeling has identified the deposit radius of gyration as a candidate variable to account for clogging as a function of (1) colloid accumulation and (2) deposit morphology.
英文关键词groundwater remediation permeability clogging colloids fractal
URL查看原文
来源平台US Department of Energy (DOE)
引用统计
文献类型科技报告
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/6234
专题地球科学
推荐引用方式
GB/T 7714
Mays, David C. [University of Colorado Denver]. Linking deposit morphology and clogging in subsurface remediation: Final Technical Report,2013.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mays, David C. [University of Colorado Denver]]的文章
百度学术
百度学术中相似的文章
[Mays, David C. [University of Colorado Denver]]的文章
必应学术
必应学术中相似的文章
[Mays, David C. [University of Colorado Denver]]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。