GSTDTAP  > 地球科学
DOI10.2172/1023025
报告编号DOE/ER/64613-1
来源IDOSTI ID: 1023025
Partitioning of Nanoparticles into Organic Phases and Model Cells
Aluzzi, F J
2011-08-25
出版年2011
语种英语
国家美国
领域地球科学
英文摘要There is a recognized need to understand and predict the fate, transport and bioavailability of engineered nanoparticles (ENPs) in aquatic and soil ecosystems. Recent research focuses on either collection of empirical data (e.g., removal of a specific NP through water or soil matrices under variable experimental conditions) or precise NP characterization (e.g. size, degree of aggregation, morphology, zeta potential, purity, surface chemistry, and stability). However, it is almost impossible to transition from these precise measurements to models suitable to assess the NP behavior in the environment with complex and heterogeneous matrices. For decades, the USEPA has developed and applies basic partitioning parameters (e.g., octanol-water partition coefficients) and models (e.g., EPI Suite, ECOSAR) to predict the environmental fate, bioavailability, and toxicity of organic pollutants (e.g., pesticides, hydrocarbons, etc.). In this project we have investigated the hypothesis that NP partition coefficients between water and organic phases (octanol or lipid bilayer) is highly dependent on their physiochemical properties, aggregation, and presence of natural constituents in aquatic environments (salts, natural organic matter), which may impact their partitioning into biological matrices (bioaccumulation) and human exposure (bioavailability) as well as the eventual usage in modeling the fate and bioavailability of ENPs. In this report, we use the terminology "partitioning" to operationally define the fraction of ENPs distributed among different phases. The mechanisms leading to this partitioning probably involve both chemical force interactions (hydrophobic association, hydrogen bonding, ligand exchange, etc.) and physical forces that bring the ENPs in close contact with the phase interfaces (diffusion, electrostatic interactions, mixing turbulence, etc.). Our work focuses on partitioning, but also provides insight into the relative behavior of ENPs as either "more like dissolved substances" or "more like colloids" as the division between behaviors of macromolecules versus colloids remains ill-defined. Below we detail our work on two broadly defined objectives: (i) Partitioning of ENP into octanol, lipid bilayer, and water, and (ii) disruption of lipid bilayers by ENPs. We have found that the partitioning of NP reaches pseudo-equilibrium distributions between water and organic phases. The equilibrium partitioning most strongly depends on the particle surface charge, which leads us to the conclusion that electrostatic interactions are critical to understanding the fate of NP in the environment. We also show that the kinetic rate at which particle partition is a function of their size (small particles partition faster by number) as can be predicted from simple DLVO models. We have found that particle number density is the most effective dosimetry to present our results and provide quantitative comparison across experiments and experimental platforms. Cumulatively, our work shows that lipid bilayers are a more effective organic phase than octanol because of the definable surface area and ease of interpretation of the results. Our early comparison of NP partitioning between water and lipids suggest that this measurement can be predictive of bioaccumulation in aquatic organisms. We have shown that nanoparticle disrupt lipid bilayer membranes and detail how NP-bilayer interaction leads to the malfunction of lipid bilayers in regulating the fluxes of ionic charges and molecules. Our results show that the disruption of the lipid membranes is similar to that of toxin melittin, except single particles can disrupt a bilayer. We show that only a single particle is required to disrupt a 150 nm DOPC liposome. The equilibrium leakage of membranes is a function of the particle number density and particle surface charge, consistent with results from our partitioning experiments. Our disruption experiments with varying surface functionality show that positively charged particles (poly amine) are most disruptive, consistent with in in vitro toxicity panels using cell cultures. Overall, this project has resulted in 8 published or submitted archival papers and has been presented 12 times. We have trained five students and provided growth opportunities for a postdoc.
英文关键词nano particle fate and transport toxicology nano-bio interface colloids
URL查看原文
来源平台US Department of Energy (DOE)
引用统计
文献类型科技报告
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/5415
专题地球科学
推荐引用方式
GB/T 7714
Aluzzi, F J. Partitioning of Nanoparticles into Organic Phases and Model Cells,2011.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Aluzzi, F J]的文章
百度学术
百度学术中相似的文章
[Aluzzi, F J]的文章
必应学术
必应学术中相似的文章
[Aluzzi, F J]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。