GSTDTAP  > 地球科学
DOI10.2172/989105
报告编号None
来源IDOSTI ID: 989105
Investigation of Aging Mechanisms in Lean NOx Traps
Mark Crocker
2010-03-31
出版年2010
语种英语
国家美国
领域地球科学
英文摘要Lean NO{sub x} traps (LNTs) represent a promising technology for the abatement of NO{sub x} under lean conditions. Although LNTs are starting to find commercial application, the issue of catalyst durability remains problematic. LNT susceptibility to sulfur poisoning is the single most important factor determining effective catalyst lifetime. The NO{sub x} storage element of the catalyst has a greater affinity for SO{sub 3} than it does for NO{sub 2}, and the resulting sulfate is more stable than the stored nitrate. Although this sulfate can be removed from the catalyst by means of high temperature treatment under rich conditions, the required conditions give rise to deactivation mechanisms such as precious metal sintering, total surface area loss, and solid state reactions between the various oxides present. The principle objective of this project was to improve understanding of the mechanisms of lean NO{sub x} trap aging, and to understand the effect of washcoat composition on catalyst aging characteristics. The approach utilized involved detailed characterization of model catalysts prior to and after aging, in tandem with measurement of catalyst performance in NO{sub x} storage and reduction. In this manner, NO{sub x} storage and reduction characteristics were correlated with the evolution of catalyst physico-chemical properties upon aging. Rather than using poorly characterized proprietary catalysts, or simple model catalysts of the Pt/BaO/Al{sub 2}O{sub 3} type (representing the first generation of LNTs), Pt/Rh/BaO/Al{sub 2}O{sub 3} catalysts were employed which also incorporated CeO{sub 2} or CeO{sub 2}-ZrO{sub 2}, representing a model system which more accurately reflects current LNT formulations. Catalysts were prepared in which the concentration of each of the main components was systematically varied: Pt (50, 75 or 100 g/ft{sup 3}), Rh (10 or 20 g/ft{sup 3}), BaO (15, 30 or 45 g/L), and either CeO{sub 2} (0, 50 or 100 g/L) or CeO{sub 2}-ZrO{sub 2} (0, 50 or 100 g/L). A high surface area La-stabilized alumina was used to support the BaO phase. Catalysts were obtained by washcoating onto standard cordierite substrates, the total washcoat loading being set at 260 g/L. La-stabilized alumina was used as the balance. Subsequent to de-greening, the NO{sub x} storage and reduction characteristics of the catalysts were evaluated on a bench reactor, after which the catalysts were aged on a bench reactor to the equivalent of ca. 75,000 miles of road aging using a published accelerated aging protocol. The aged catalysts were then subjected to the same evaluation proecdure used for the de-greened catalysts. In addition to the use of standard physico-chemical analytical techniques for studying the fresh and aged model catalysts, use was made of advanced analytical tools for characterizing their NO{sub x} storage/reduction and sulfation/desulfation characteristics, such as Spatially resolved capillary-inlet Mass Spectrometry (SpaciMS) and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS).
URL查看原文
来源平台US Department of Energy (DOE)
引用统计
文献类型科技报告
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/4959
专题地球科学
推荐引用方式
GB/T 7714
Mark Crocker. Investigation of Aging Mechanisms in Lean NOx Traps,2010.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mark Crocker]的文章
百度学术
百度学术中相似的文章
[Mark Crocker]的文章
必应学术
必应学术中相似的文章
[Mark Crocker]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。