GSTDTAP  > 地球科学
DOI10.2172/1033088
报告编号PNNL-19349
来源IDOSTI ID: 1033088
Computational Fluid Dynamics Modeling of the John Day Dam Tailrace
Rakowski, Cynthia L.; Perkins, William A.; Richmond, Marshall C.; Serkowski, John A.
2010-07-08
出版年2010
语种英语
国家美国
领域地球科学
英文摘要US Army Corps of Engineers - Portland District required that a two-dimensional (2D) depth-averaged and a three-dimensional (3D) free-surface numerical models to be developed and validated for the John Day tailrace. These models were used to assess potential impact of a select group of structural and operational alternatives to tailrace flows aimed at improving fish survival at John Day Dam. The 2D model was used for the initial assessment of the alternatives in conjunction with a reduced-scale physical model of the John Day Project. A finer resolution 3D model was used to more accurately model the details of flow in the stilling basin and near-project tailrace hydraulics. Three-dimensional model results were used as input to the Pacific Northwest National Laboratory particle tracking software, and particle paths and times to pass a downstream cross section were used to assess the relative differences in travel times resulting from project operations and structural scenarios for multiple total river flows. Streamlines and neutrally-buoyant particles were seeded in all turbine and spill bays with flows. For a Total River of 250 kcfs running with the Fish Passage Plan spill pattern and a spillwall, the mean residence times for all particles were little changed; however the tails of the distribution were truncated for both spillway and powerhouse release points, and, for the powerhouse releases, reduced the residence time for 75% of the particles to pass a downstream cross section from 45.5 minutes to 41.3 minutes. For a total river of 125 kcfs configured with the operations from the Fish Passage Plan for the temporary spillway weirs and for a proposed spillwall, the neutrally-buoyant particle tracking data showed that the river with a spillwall in place had the overall mean residence time increase; however, the residence time for 75% of the powerhouse-released particles to pass a downstream cross section was reduced from 102.4 min to 89 minutes.
URL查看原文
来源平台US Department of Energy (DOE)
引用统计
文献类型科技报告
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/4816
专题地球科学
推荐引用方式
GB/T 7714
Rakowski, Cynthia L.,Perkins, William A.,Richmond, Marshall C.,et al. Computational Fluid Dynamics Modeling of the John Day Dam Tailrace,2010.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rakowski, Cynthia L.]的文章
[Perkins, William A.]的文章
[Richmond, Marshall C.]的文章
百度学术
百度学术中相似的文章
[Rakowski, Cynthia L.]的文章
[Perkins, William A.]的文章
[Richmond, Marshall C.]的文章
必应学术
必应学术中相似的文章
[Rakowski, Cynthia L.]的文章
[Perkins, William A.]的文章
[Richmond, Marshall C.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。