GSTDTAP  > 气候变化
DOI10.1002/joc.4904
Bayesian change point analysis for extreme daily precipitation
Chen, Si1; Li, Yaxing2; Kim, Jinheum3; Kim, Seong W.4
2017-06-15
发表期刊INTERNATIONAL JOURNAL OF CLIMATOLOGY
ISSN0899-8418
EISSN1097-0088
出版年2017
卷号37期号:7
文章类型Article
语种英语
国家South Korea
英文摘要

Change point (CP) analysis of extreme precipitation plays a key role to incorporate non-stationarity in flood predictions under climate change. This article provides a Bayesian method to detect the CP frequently appearing in extreme precipitation data. Unlike most published work based on a normal distribution, we allow for the model to follow a generalized Pareto distribution to fit extreme precipitation over a high threshold with a CP, which can effectively utilize tail behaviour of the distribution. The Bayesian CP detection is investigated on four models: a no change model, a shape change model, a scale change model, and both a shape and scale change model. Model selection is performed using the Bayes factor and model posterior probability; the posterior means of the unknown CP and the model parameters before and after the CP can be obtained based on the selected CP model. Simulation studies and a real data example are provided to demonstrate the proposed methodologies. Finally, model uncertainty issues in the frequency analysis are extensively discussed. It is found that considering the abrupt and sustained CP in extreme precipitation is important when performing hydraulic or hydrologic design.


英文关键词Bayesian model selection change point analysis extreme precipitation frequency analysis generalized Pareto distribution
领域气候变化
收录类别SCI-E
WOS记录号WOS:000404851400006
WOS关键词HYDROMETEOROLOGICAL TIME-SERIES ; BINARY SEGMENTATION ; RECENT TRENDS ; SOUTH-KOREA ; RIVER-BASIN ; TEMPERATURE ; MODEL ; VARIABILITY ; INFERENCE ; EVENTS
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/36928
专题气候变化
作者单位1.Hanyang Univ, Dept Civil & Environm Engn, Seoul, South Korea;
2.Hanyang Univ, Dept Elect & Commun Engn, Ansan, South Korea;
3.Univ Suwon, Dept Appl Stat, Hwaseong, South Korea;
4.Hanyang Univ, Dept Appl Math, 55 Hanyangdaehak Ro, Ansan 15588, South Korea
推荐引用方式
GB/T 7714
Chen, Si,Li, Yaxing,Kim, Jinheum,et al. Bayesian change point analysis for extreme daily precipitation[J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY,2017,37(7).
APA Chen, Si,Li, Yaxing,Kim, Jinheum,&Kim, Seong W..(2017).Bayesian change point analysis for extreme daily precipitation.INTERNATIONAL JOURNAL OF CLIMATOLOGY,37(7).
MLA Chen, Si,et al."Bayesian change point analysis for extreme daily precipitation".INTERNATIONAL JOURNAL OF CLIMATOLOGY 37.7(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Si]的文章
[Li, Yaxing]的文章
[Kim, Jinheum]的文章
百度学术
百度学术中相似的文章
[Chen, Si]的文章
[Li, Yaxing]的文章
[Kim, Jinheum]的文章
必应学术
必应学术中相似的文章
[Chen, Si]的文章
[Li, Yaxing]的文章
[Kim, Jinheum]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。