Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1002/joc.4904 |
Bayesian change point analysis for extreme daily precipitation | |
Chen, Si1; Li, Yaxing2; Kim, Jinheum3; Kim, Seong W.4 | |
2017-06-15 | |
发表期刊 | INTERNATIONAL JOURNAL OF CLIMATOLOGY
![]() |
ISSN | 0899-8418 |
EISSN | 1097-0088 |
出版年 | 2017 |
卷号 | 37期号:7 |
文章类型 | Article |
语种 | 英语 |
国家 | South Korea |
英文摘要 | Change point (CP) analysis of extreme precipitation plays a key role to incorporate non-stationarity in flood predictions under climate change. This article provides a Bayesian method to detect the CP frequently appearing in extreme precipitation data. Unlike most published work based on a normal distribution, we allow for the model to follow a generalized Pareto distribution to fit extreme precipitation over a high threshold with a CP, which can effectively utilize tail behaviour of the distribution. The Bayesian CP detection is investigated on four models: a no change model, a shape change model, a scale change model, and both a shape and scale change model. Model selection is performed using the Bayes factor and model posterior probability; the posterior means of the unknown CP and the model parameters before and after the CP can be obtained based on the selected CP model. Simulation studies and a real data example are provided to demonstrate the proposed methodologies. Finally, model uncertainty issues in the frequency analysis are extensively discussed. It is found that considering the abrupt and sustained CP in extreme precipitation is important when performing hydraulic or hydrologic design. |
英文关键词 | Bayesian model selection change point analysis extreme precipitation frequency analysis generalized Pareto distribution |
领域 | 气候变化 |
收录类别 | SCI-E |
WOS记录号 | WOS:000404851400006 |
WOS关键词 | HYDROMETEOROLOGICAL TIME-SERIES ; BINARY SEGMENTATION ; RECENT TRENDS ; SOUTH-KOREA ; RIVER-BASIN ; TEMPERATURE ; MODEL ; VARIABILITY ; INFERENCE ; EVENTS |
WOS类目 | Meteorology & Atmospheric Sciences |
WOS研究方向 | Meteorology & Atmospheric Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/36928 |
专题 | 气候变化 |
作者单位 | 1.Hanyang Univ, Dept Civil & Environm Engn, Seoul, South Korea; 2.Hanyang Univ, Dept Elect & Commun Engn, Ansan, South Korea; 3.Univ Suwon, Dept Appl Stat, Hwaseong, South Korea; 4.Hanyang Univ, Dept Appl Math, 55 Hanyangdaehak Ro, Ansan 15588, South Korea |
推荐引用方式 GB/T 7714 | Chen, Si,Li, Yaxing,Kim, Jinheum,et al. Bayesian change point analysis for extreme daily precipitation[J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY,2017,37(7). |
APA | Chen, Si,Li, Yaxing,Kim, Jinheum,&Kim, Seong W..(2017).Bayesian change point analysis for extreme daily precipitation.INTERNATIONAL JOURNAL OF CLIMATOLOGY,37(7). |
MLA | Chen, Si,et al."Bayesian change point analysis for extreme daily precipitation".INTERNATIONAL JOURNAL OF CLIMATOLOGY 37.7(2017). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论