GSTDTAP  > 气候变化
DOI10.1002/joc.5131
Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran
Alijanian, Mohammadali1,2; Rakhshandehroo, Gholam Reza1; Mishra, Ashok K.2; Dehghani, Maryam1
2017-11-30
发表期刊INTERNATIONAL JOURNAL OF CLIMATOLOGY
ISSN0899-8418
EISSN1097-0088
出版年2017
卷号37期号:14
文章类型Article
语种英语
国家Iran; USA
英文摘要

In situ rainfall data observed by gauges is the most important data in water resources management. However, these data have some limitations both spatially and temporally. With the advancements in satellite rainfall products, it is now possible to evaluate whether these products can capture the climatology of known rainfall characteristics. In this study, five satellite rainfall estimates (SREs) were evaluated against gauge data based on different rainfall regimes over Iran. The evaluated SREs are Climate Prediction Center Morphing Technique, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Tropical Rainfall Measuring Mission (TRMM), PERSIANN Climate Data Record (PERSIANN-CDR) and the most recently available Multi-Source Weighted-Ensemble Precipitation (MSWEP) data. The performance of these five SREs is evaluated with respect to gauge data (total: 958 stations) in eight different climatic zones at daily, monthly, and wet/dry spells during a ten-year period (2003-2012). Performance of SREs was evaluated using metrics of comparison based on correlation coefficient (CC), root mean square error, and relative error. The study shows that MSWEP has the highest CC (0.72) followed by TRMM (0.46) and PERSIANN-CDR (0.43) at daily time scale. The performance of SREs varies with respect to climatic regimes, for example, the best correlation was observed in the south, the shore of Persian Gulf with very hot and humid' climate with CC values of 0.72, 0.70, and 0.82 for MSWEP, TRMM and PERSIANN-CDR, respectively. Further, the performance of SREs was evaluated using the categorical statistics to capture the rainfall pattern based on different groups (e.g. light, moderate and heavy rainfall events). Results show that MSWEP, PERSIANN-CDR, and TRMM performed well to distinguish rain from no-rain condition, whereas for higher rainfall rates, PERSIANN-CDR outperforms the other SREs.


英文关键词satellite rainfall estimation CMORPH PERSIANN PERSIANN-CDR TRMM MSWEP categorical statistics
领域气候变化
收录类别SCI-E
WOS记录号WOS:000414322800011
WOS关键词PRECIPITATION ANALYSIS TMPA ; HIGH-RESOLUTION SATELLITE ; EXTREME PRECIPITATION ; TROPICAL RAINFALL ; PRODUCTS ; GAUGE ; VALIDATION ; CHINA ; WET
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/36689
专题气候变化
作者单位1.Shiraz Univ, Dept Civil & Environm Engn, Shiraz, Iran;
2.Clemson Univ, Glenn Dept Civil Engn, Clemson, SC 29631 USA
推荐引用方式
GB/T 7714
Alijanian, Mohammadali,Rakhshandehroo, Gholam Reza,Mishra, Ashok K.,et al. Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran[J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY,2017,37(14).
APA Alijanian, Mohammadali,Rakhshandehroo, Gholam Reza,Mishra, Ashok K.,&Dehghani, Maryam.(2017).Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran.INTERNATIONAL JOURNAL OF CLIMATOLOGY,37(14).
MLA Alijanian, Mohammadali,et al."Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran".INTERNATIONAL JOURNAL OF CLIMATOLOGY 37.14(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Alijanian, Mohammadali]的文章
[Rakhshandehroo, Gholam Reza]的文章
[Mishra, Ashok K.]的文章
百度学术
百度学术中相似的文章
[Alijanian, Mohammadali]的文章
[Rakhshandehroo, Gholam Reza]的文章
[Mishra, Ashok K.]的文章
必应学术
必应学术中相似的文章
[Alijanian, Mohammadali]的文章
[Rakhshandehroo, Gholam Reza]的文章
[Mishra, Ashok K.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。