GSTDTAP  > 气候变化
DOI10.1002/joc.5428
Parameter optimization for carbon and water fluxes in two global land surface models based on surrogate modelling
Li, Jianduo1; Duan, Qingyun2; Wang, Ying-Ping3; Gong, Wei2; Gan, Yanjun1; Wang, Chen4
2018-04-01
发表期刊INTERNATIONAL JOURNAL OF CLIMATOLOGY
ISSN0899-8418
EISSN1097-0088
出版年2018
卷号38页码:E1016-E1031
文章类型Article
语种英语
国家Peoples R China; Australia
英文摘要

Errors are quite large in the simulated carbon and water fluxes obtained by global models used for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, and reducing those errors is important for improving our confidence about these models and their projections. Errors in model parameter values are a major cause of those large modelling errors but can be significantly reduced if model parameter values are optimized. While parameter optimizations have been carried out at local sites or regional scales, parameter optimizations have been rarely conducted at the global scale because of the high computing costs required to optimize a large (>100) number of model parameters. In this study, we used an adaptive surrogate modelling based optimization (ASMO) method to maximize the match between simulated monthly global gross primary production (GPP) and latent heat flux (LE) derived by two global land surface models (LSMs) and the model-data products for global GPP and LE from the 1982-2008 period generated by the Max Plank Institute. The ASMO method only required a few hundred model runs to find the optimal values of all optimized parameters for the two global LSMs [the Australian Community Atmosphere-Biosphere-Land Exchange (CABLE) and joint UK land environment simulator (JULES)]. Our results show that up to 65% of the model errors can be reduced by parameter optimization for most of the plant functional types (PFTs) and that the model performances of CABLE and JULES are significantly improved at 72 and 93% of the land points, respectively. At last, we discuss the limitations of this work and recommend that parameter optimization based on surrogate modelling using various observational data sets and acceptable prior information of uncertainties in model structure and observations should be considered as a key step in improving the performance of global LSMs or model intercomparisons.


英文关键词parameter optimization carbon flux water flux global land surface modelling surrogate model
领域气候变化
收录类别SCI-E
WOS记录号WOS:000431999600068
WOS关键词ENVIRONMENT SIMULATOR JULES ; MULTICRITERIA METHODS ; FORCING DATA ; CLIMATE ; UNCERTAINTY ; CALIBRATION ; SYSTEM ; SENSITIVITY ; EVOLUTION ; FRAMEWORK
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/36679
专题气候变化
作者单位1.Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China;
2.Beijing Normal Univ, Fac Geog Sci, 19 Xinjiekouwai St, Beijing 100875, Peoples R China;
3.CSIRO Oceans & Atmosphere, Aspendale, Vic, Australia;
4.Chinese Acad Sci, South China Bot Garden, Guangzhou, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Li, Jianduo,Duan, Qingyun,Wang, Ying-Ping,et al. Parameter optimization for carbon and water fluxes in two global land surface models based on surrogate modelling[J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY,2018,38:E1016-E1031.
APA Li, Jianduo,Duan, Qingyun,Wang, Ying-Ping,Gong, Wei,Gan, Yanjun,&Wang, Chen.(2018).Parameter optimization for carbon and water fluxes in two global land surface models based on surrogate modelling.INTERNATIONAL JOURNAL OF CLIMATOLOGY,38,E1016-E1031.
MLA Li, Jianduo,et al."Parameter optimization for carbon and water fluxes in two global land surface models based on surrogate modelling".INTERNATIONAL JOURNAL OF CLIMATOLOGY 38(2018):E1016-E1031.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Jianduo]的文章
[Duan, Qingyun]的文章
[Wang, Ying-Ping]的文章
百度学术
百度学术中相似的文章
[Li, Jianduo]的文章
[Duan, Qingyun]的文章
[Wang, Ying-Ping]的文章
必应学术
必应学术中相似的文章
[Li, Jianduo]的文章
[Duan, Qingyun]的文章
[Wang, Ying-Ping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。