GSTDTAP  > 气候变化
DOI10.1007/s00382-016-3121-8
Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness
Berger, J. B.1,2; Wadley, H. N. G.3; Mcmeeking, R. M.1,2,4,5
2017-03-23
发表期刊NATURE
ISSN0028-0836
EISSN1476-4687
出版年2017
卷号543期号:7646页码:533-+
文章类型Article
语种英语
国家USA; Scotland; Germany
英文摘要

A wide variety of high-performance applications(1) require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses(2), when made from materials of high elastic stiffness and low density(3), represent some of the lightest, stiffest and strongest materials available today(4). Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents(3,5-12), leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit(13). We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption(2,14,15), optical bandgaps(16-19) and mechanically tunable acoustic bandgaps(20), high thermal insulation(21), buoyancy, and fluid storage and transport. Our relatively simple design can be manufactured using origami-like sheet folding(22) and bonding methods.


领域地球科学 ; 气候变化 ; 资源环境
收录类别SCI-E
WOS记录号WOS:000397018000047
WOS关键词STRENGTH ; BEHAVIOR ; DESIGN
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/36260
专题气候变化
作者单位1.Univ Calif, Dept Mat, Santa Barbara, CA 93106 USA;
2.Univ Calif, Dept Mech Engn, Santa Barbara, CA 93106 USA;
3.Univ Virginia, Sch Engn & Appl Sci, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA;
4.Univ Aberdeen, Kings Coll, Sch Engn, Aberdeen AB24 3UE, Scotland;
5.INM Leibniz Inst New Mat, Campus D22, D-66123 Saarbrucken, Germany
推荐引用方式
GB/T 7714
Berger, J. B.,Wadley, H. N. G.,Mcmeeking, R. M.. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness[J]. NATURE,2017,543(7646):533-+.
APA Berger, J. B.,Wadley, H. N. G.,&Mcmeeking, R. M..(2017).Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness.NATURE,543(7646),533-+.
MLA Berger, J. B.,et al."Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness".NATURE 543.7646(2017):533-+.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Berger, J. B.]的文章
[Wadley, H. N. G.]的文章
[Mcmeeking, R. M.]的文章
百度学术
百度学术中相似的文章
[Berger, J. B.]的文章
[Wadley, H. N. G.]的文章
[Mcmeeking, R. M.]的文章
必应学术
必应学术中相似的文章
[Berger, J. B.]的文章
[Wadley, H. N. G.]的文章
[Mcmeeking, R. M.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。