GSTDTAP  > 气候变化
DOI10.1007/s00382-017-4040-z
Potential predictability and forecast skill in ensemble climate forecast: a skill-persistence rule
Jin, Yishuai1; Rong, Xinyao2; Liu, Zhengyu3
2018-10-01
发表期刊CLIMATE DYNAMICS
ISSN0930-7575
EISSN1432-0894
出版年2018
卷号51页码:2725-2742
文章类型Article
语种英语
国家Peoples R China; USA
英文摘要

This study investigates the factors relationship between the forecast skills for the real world (actual skill) and perfect model (perfect skill) in ensemble climate model forecast with a series of fully coupled general circulation model forecast experiments. It is found that the actual skill for sea surface temperature (SST) in seasonal forecast is substantially higher than the perfect skill on a large part of the tropical oceans, especially the tropical Indian Ocean and the central-eastern Pacific Ocean. The higher actual skill is found to be related to the higher observational SST persistence, suggesting a skill-persistence rule: a higher SST persistence in the real world than in the model could overwhelm the model bias to produce a higher forecast skill for the real world than for the perfect model. The relation between forecast skill and persistence is further proved using a first-order autoregressive model (AR1) analytically for theoretical solutions and numerically for analogue experiments. The AR1 model study shows that the skill-persistence rule is strictly valid in the case of infinite ensemble size, but could be distorted by sampling errors and non-AR1 processes. This study suggests that the so called perfect skill is model dependent and cannot serve as an accurate estimate of the true upper limit of real world prediction skill, unless the model can capture at least the persistence property of the observation.


英文关键词Predictability Seasonal forecast Perfect model CGCM AR1 model
领域气候变化
收录类别SCI-E
WOS记录号WOS:000444947600020
WOS关键词DATA ASSIMILATION ; VARIABILITY ; PREDICTION ; OSCILLATION ; HOLOCENE ; DESIGN ; OCEAN
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/35926
专题气候变化
作者单位1.Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Beijing, Peoples R China;
2.Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China;
3.Ohio State Univ, Dept Geog, Atmospher Sci Program, Columbus, OH 43210 USA
推荐引用方式
GB/T 7714
Jin, Yishuai,Rong, Xinyao,Liu, Zhengyu. Potential predictability and forecast skill in ensemble climate forecast: a skill-persistence rule[J]. CLIMATE DYNAMICS,2018,51:2725-2742.
APA Jin, Yishuai,Rong, Xinyao,&Liu, Zhengyu.(2018).Potential predictability and forecast skill in ensemble climate forecast: a skill-persistence rule.CLIMATE DYNAMICS,51,2725-2742.
MLA Jin, Yishuai,et al."Potential predictability and forecast skill in ensemble climate forecast: a skill-persistence rule".CLIMATE DYNAMICS 51(2018):2725-2742.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jin, Yishuai]的文章
[Rong, Xinyao]的文章
[Liu, Zhengyu]的文章
百度学术
百度学术中相似的文章
[Jin, Yishuai]的文章
[Rong, Xinyao]的文章
[Liu, Zhengyu]的文章
必应学术
必应学术中相似的文章
[Jin, Yishuai]的文章
[Rong, Xinyao]的文章
[Liu, Zhengyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。