GSTDTAP  > 地球科学
DOI10.5194/acp-22-8767-2022
Seasonal variations in fire conditions are important drivers in the trend of aerosol optical properties over the south-eastern Atlantic
Haochi Che, Michal Segal-Rozenhaimer, Lu Zhang, Caroline Dang, Paquita Zuidema, Arthur J. Sedlacek III, Xiaoye Zhang, and Connor Flynn
2022-07-07
发表期刊Atmospheric Chemistry and Physics
出版年2022
英文摘要

From June to October, southern Africa produces one-third of the global biomass burning (BB) emissions by widespread fires. BB aerosols are transported westward over the south-eastern Atlantic with the mid-tropospheric winds, resulting in significant radiative effects. Ascension Island (ASI) is located midway between Africa and South America. From June 2016 to October 2017, a 17-month in situ observation campaign on ASI found a low single-scattering albedo (SSA) as well as a high mass absorption cross-section of black carbon (MACBC), demonstrating the strong absorbing marine boundary layer in the south-eastern Atlantic. Here we investigate the monthly variations of critical optical properties of BB aerosols, i.e. SSA and MACBC, during the BB seasons and the driving factors behind these variations. Both SSA and MACBC increase from June to August and decrease in September and October. The average SSA during the BB seasons is 0.81 at 529 nm wavelength, with the highest mean  0.85 in October and the lowest  0.78 in August. The absorption enhancement (Eabs) derived from the MACBC shows similar trends with SSA, with the average during the whole of the BB seasons at  1.96 and  2.07 in 2016 and 2017, respectively. As the Eabs is higher than the  1.5 commonly adopted value by climate models, this result suggests the marine boundary layer in the south-eastern Atlantic is more absorbing than model simulations. We find the enhanced ratio of BC to CO (ΔBC/ΔCO, equal to BC/ΔCO as the BC background concentration is considered to be 0) is well correlated with SSA and MACBC, providing a simple way to estimate the aerosol optical characteristics in the south-eastern Atlantic. The exponential function we proposed can approximate SSA and MACBC with BC/ΔCO, and when BC/ΔCO is small it can capture the rapid growth of SSA as BC/ΔCO decreases. BC/ΔCO is influenced by combustion conditions and aerosol scavenging. From the analysis of the location of BB, the primary source fuel, the water content in the fuel, combined with the mean cloud cover and precipitation in the transport areas of the BB plume, we conclude that the increase in BC/ΔCO from June to August is likely to be caused by burning becoming more flaming. The reduction in the water content of fuels may be responsible for the change in the burning conditions from June to August. The decrease in BC/ΔCO in September and October may be caused by two factors, one being a lower proportion of flaming conditions, possibly associated with a decrease in mean surface wind speed in the burning area, and the other being an increase in precipitation in the BB transport pathway, leading to enhanced aerosol scavenging, which ultimately results in an increase in SSA and MACBC.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/352897
专题地球科学
推荐引用方式
GB/T 7714
Haochi Che, Michal Segal-Rozenhaimer, Lu Zhang, Caroline Dang, Paquita Zuidema, Arthur J. Sedlacek III, Xiaoye Zhang, and Connor Flynn. Seasonal variations in fire conditions are important drivers in the trend of aerosol optical properties over the south-eastern Atlantic[J]. Atmospheric Chemistry and Physics,2022.
APA Haochi Che, Michal Segal-Rozenhaimer, Lu Zhang, Caroline Dang, Paquita Zuidema, Arthur J. Sedlacek III, Xiaoye Zhang, and Connor Flynn.(2022).Seasonal variations in fire conditions are important drivers in the trend of aerosol optical properties over the south-eastern Atlantic.Atmospheric Chemistry and Physics.
MLA Haochi Che, Michal Segal-Rozenhaimer, Lu Zhang, Caroline Dang, Paquita Zuidema, Arthur J. Sedlacek III, Xiaoye Zhang, and Connor Flynn."Seasonal variations in fire conditions are important drivers in the trend of aerosol optical properties over the south-eastern Atlantic".Atmospheric Chemistry and Physics (2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Haochi Che, Michal Segal-Rozenhaimer, Lu Zhang, Caroline Dang, Paquita Zuidema, Arthur J. Sedlacek III, Xiaoye Zhang, and Connor Flynn]的文章
百度学术
百度学术中相似的文章
[Haochi Che, Michal Segal-Rozenhaimer, Lu Zhang, Caroline Dang, Paquita Zuidema, Arthur J. Sedlacek III, Xiaoye Zhang, and Connor Flynn]的文章
必应学术
必应学术中相似的文章
[Haochi Che, Michal Segal-Rozenhaimer, Lu Zhang, Caroline Dang, Paquita Zuidema, Arthur J. Sedlacek III, Xiaoye Zhang, and Connor Flynn]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。