GSTDTAP  > 地球科学
DOI10.5194/acp-2022-340
Observation-Based Constraints on Modeled Aerosol Surface Area: Implications for Heterogeneous Chemistry
Rachel A. Bergin, Monica Harkey, Alicia Hoffman, Richard H. Moore, Bruce Anderson, Andreas Beyersdorf, Luke Ziemba, Lee Thornhill, Edward Winstead, Tracey Holloway, and Timothy H. Bertram
2022-06-22
发表期刊Atmospheric Chemistry and Physics
出版年2022
英文摘要

Abstract. Heterogeneous reactions occurring at the surface of atmospheric aerosol particles regulate the production and lifetime of a wide array of atmospheric gases. Aerosol surface area plays a critical role in setting the rate of heterogeneous reactions in the atmosphere. Despite the central role for aerosol surface area, there are few assessments of the accuracy of aerosol surface area concentrations in regional and global models. In this study, we compare aerosol surface area concentrations in the EPA’s Community Multiscale Air Quality (CMAQ) model with commensurate observations from the 2011 NASA flight-based DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) campaign. The study region includes the Baltimore and Washington, DC metropolitan area. Dry aerosol surface area was measured aboard the NASA P-3B aircraft using an Ultra-High Sensitivity Aerosol Spectrometer (UHSAS). We show that modeled and measured dry aerosol surface area, Sa,mod and Sa,meas respectively, are modestly correlated (r2 = 0.52) and on average agree to within a factor of two (Sa,mod/Sa,meas = 0.44) over the course of the 13 research flights. We show that Sa,mod/Sa,meas does not depend strongly on photochemical age or the concentration of secondary biogenic aerosol, suggesting that the condensation of low-volatility gas-phase compounds does not strongly affect model-measurement agreement. In comparison, there is strong agreement between measured and modeled aerosol number concentration (Nmod/Nmeas = 0.87, r2 = 0.63). The persistent underestimate of Sa in the model, combined with strong agreement in modeled and measured aerosol number concentrations, suggests that model representation of the size distribution of primary emissions or secondary aerosol formed at the early stages of oxidation may contribute to the observed differences.

For reactions occurring on small particles, the rate of heterogeneous reactions is a linear function of both Sa and the reactive uptake coefficient (γ). To assess the importance of uncertainty in modeled Sa for the representation of heterogeneous reactions in models, we compare both the mean and the variance in Sa,mod/Sa,meas to that in γ(N2O5)mod/γ(N2O5)meas. We find that the uncertainty in model representation of heterogeneous reactions is primarily driven by uncertainty in the parametrization of reactive uptake coefficients, although the discrepancy between Sa,mod and Sa,meas is not insignificant. Our analysis suggests that model improvements to aerosol surface area concentrations, in addition to more accurate parameterizations of heterogeneous kinetics, will advance the representation of heterogeneous chemistry in regional models.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/351686
专题地球科学
推荐引用方式
GB/T 7714
Rachel A. Bergin, Monica Harkey, Alicia Hoffman, Richard H. Moore, Bruce Anderson, Andreas Beyersdorf, Luke Ziemba, Lee Thornhill, Edward Winstead, Tracey Holloway, and Timothy H. Bertram. Observation-Based Constraints on Modeled Aerosol Surface Area: Implications for Heterogeneous Chemistry[J]. Atmospheric Chemistry and Physics,2022.
APA Rachel A. Bergin, Monica Harkey, Alicia Hoffman, Richard H. Moore, Bruce Anderson, Andreas Beyersdorf, Luke Ziemba, Lee Thornhill, Edward Winstead, Tracey Holloway, and Timothy H. Bertram.(2022).Observation-Based Constraints on Modeled Aerosol Surface Area: Implications for Heterogeneous Chemistry.Atmospheric Chemistry and Physics.
MLA Rachel A. Bergin, Monica Harkey, Alicia Hoffman, Richard H. Moore, Bruce Anderson, Andreas Beyersdorf, Luke Ziemba, Lee Thornhill, Edward Winstead, Tracey Holloway, and Timothy H. Bertram."Observation-Based Constraints on Modeled Aerosol Surface Area: Implications for Heterogeneous Chemistry".Atmospheric Chemistry and Physics (2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rachel A. Bergin, Monica Harkey, Alicia Hoffman, Richard H. Moore, Bruce Anderson, Andreas Beyersdorf, Luke Ziemba, Lee Thornhill, Edward Winstead, Tracey Holloway, and Timothy H. Bertram]的文章
百度学术
百度学术中相似的文章
[Rachel A. Bergin, Monica Harkey, Alicia Hoffman, Richard H. Moore, Bruce Anderson, Andreas Beyersdorf, Luke Ziemba, Lee Thornhill, Edward Winstead, Tracey Holloway, and Timothy H. Bertram]的文章
必应学术
必应学术中相似的文章
[Rachel A. Bergin, Monica Harkey, Alicia Hoffman, Richard H. Moore, Bruce Anderson, Andreas Beyersdorf, Luke Ziemba, Lee Thornhill, Edward Winstead, Tracey Holloway, and Timothy H. Bertram]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。