GSTDTAP  > 地球科学
DOI10.5194/acp-2022-354
Variations and correlations of CO, C2H2, C2H6, H2CO and HCN columns derived from three years of ground-based FTIR measurements at Xianghe, China
Minqiang Zhou, Bavo Langerock, Pucai Wang, Corinne Vigouroux, Qichen Ni, Christian Hermans, Bart Dils, Nicolas Kumps, Weidong Nan, and Martine De Mazière
2022-06-23
发表期刊Atmospheric Chemistry and Physics
出版年2022
英文摘要

Abstract. Carbon monoxide (CO), acetylene (C2H2), ethane (C2H6), formaldehyde (H2CO), and hydrogen cyanide (HCN) are important trace gases in the atmosphere. They are highly related to biomass burning, fossil fuel combustion, and biogenic emissions, affecting air quality and climate change. Mid-infrared high spectral resolution solar-absorption spectra are continuously recorded by a Fourier-transform infrared (FTIR) spectrometer (Bruker IFS 125HR) at Xianghe (39.75° N, 116.96° E), China. In this study, we use the SFIT4 code to retrieve these five species from the FTIR spectra measured between June 2018 and November 2021. The retrieval strategies, retrieval information, and uncertainties are presented and discussed. For the first time, the time series, variations, and correlations of these five species are analyzed in North China. The seasonal variations of C2H2 and C2H6 total columns show a maximum in winter-spring and a minimum in autumn, whereas the seasonal variations of H2CO and HCN show a maximum in summer and a minimum in winter. Unlike the other four species, there is almost no seasonal variation of the CO total column. Using the monthly means as the background, the synoptic variations of these species are investigated as well. The FTIR measurements at Xianghe reveal high correlations among these species, indicating that they are affected by common sources. The correlation coefficients (R) between CO and the other four species (C2H2, C2H6, H2CO, and HCN) are between 0.68 and 0.80. The FLEXible PARTicle dispersion model (FLEXPART) v10.4 backward simulations are used to understand the airmass sources observed at Xianghe, and it is found that the high column abundances are coming mainly from local anthropogenic emissions. Using satellite measurements, we show that the boreal forest fire emissions in Russia can lead to enhanced HCN total columns at Xianghe.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/351677
专题地球科学
推荐引用方式
GB/T 7714
Minqiang Zhou, Bavo Langerock, Pucai Wang, Corinne Vigouroux, Qichen Ni, Christian Hermans, Bart Dils, Nicolas Kumps, Weidong Nan, and Martine De Mazière. Variations and correlations of CO, C2H2, C2H6, H2CO and HCN columns derived from three years of ground-based FTIR measurements at Xianghe, China[J]. Atmospheric Chemistry and Physics,2022.
APA Minqiang Zhou, Bavo Langerock, Pucai Wang, Corinne Vigouroux, Qichen Ni, Christian Hermans, Bart Dils, Nicolas Kumps, Weidong Nan, and Martine De Mazière.(2022).Variations and correlations of CO, C2H2, C2H6, H2CO and HCN columns derived from three years of ground-based FTIR measurements at Xianghe, China.Atmospheric Chemistry and Physics.
MLA Minqiang Zhou, Bavo Langerock, Pucai Wang, Corinne Vigouroux, Qichen Ni, Christian Hermans, Bart Dils, Nicolas Kumps, Weidong Nan, and Martine De Mazière."Variations and correlations of CO, C2H2, C2H6, H2CO and HCN columns derived from three years of ground-based FTIR measurements at Xianghe, China".Atmospheric Chemistry and Physics (2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Minqiang Zhou, Bavo Langerock, Pucai Wang, Corinne Vigouroux, Qichen Ni, Christian Hermans, Bart Dils, Nicolas Kumps, Weidong Nan, and Martine De Mazière]的文章
百度学术
百度学术中相似的文章
[Minqiang Zhou, Bavo Langerock, Pucai Wang, Corinne Vigouroux, Qichen Ni, Christian Hermans, Bart Dils, Nicolas Kumps, Weidong Nan, and Martine De Mazière]的文章
必应学术
必应学术中相似的文章
[Minqiang Zhou, Bavo Langerock, Pucai Wang, Corinne Vigouroux, Qichen Ni, Christian Hermans, Bart Dils, Nicolas Kumps, Weidong Nan, and Martine De Mazière]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。