GSTDTAP  > 资源环境科学
T cells from common colds cross-protect against infection with SARS-CoV-2
admin
2022-01-10
发布年2022
语种英语
国家英国
领域资源环境
正文(英文)
A woman sneezing after catching the common cold

Credit: Shutterstock

People with higher levels of T cells from common cold coronaviruses are less likely to become infected with SARS-CoV-2.

A new study, published in Nature Communications and led by Imperial College London researchers, provides the first evidence of a protective role for these T cells. While previous studies have shown that T cells induced by other coronaviruses can recognise SARS-CoV-2, the new study examines for the first time how the presence of these T cells at the time of SARS-CoV-2 exposure influences whether someone becomes infected.

The researchers also say their findings provide a blueprint for a second-generation, universal vaccine that could prevent infection from current and future SARS-CoV-2 variants, including Omicron.

Dr Rhia Kundu, first author of the study, from Imperial’s National Heart & Lung Institute, says: “Being exposed to the SARS-CoV-2 virus doesn’t always result in infection, and we’ve been keen to understand why. We found that high levels of pre-existing T cells, created by the body when infected with other human coronaviruses like the common cold, can protect against COVID-19 infection.

"Being exposed to the SARS-CoV-2 virus doesn’t always result in infection, and we’ve been keen to understand why." Dr Rhia Kundu National Heart & Lung Institute

"While this is an important discovery, it is only one form of protection, and I would stress that no one should rely on this alone. Instead, the best way to protect yourself against COVID-19 is to be fully vaccinated, including getting your booster dose.”

The study began in September 2020 when most people in the UK had neither been infected nor vaccinated against SARS-CoV-2. It included 52 people who lived with someone with PCR-confirmed SARS-CoV-2 infection and who had therefore been exposed to the virus. The participants did PCR tests at the outset and 4 and 7 days later, to determine if they developed an infection.

Blood samples from the 52 participants were taken within 1-6 days of them being exposed to the virus. This enabled the researchers to analyse the levels of pre-existing T cells induced by previous common cold coronavirus infections that also cross-recognise proteins of the SARS-CoV-2 virus.

New vaccine target 

The researchers found that there were significantly higher levels of these cross-reactive T cells in the 26 people who did not become infected, compared to the 26 people who did become infected. These T cells targeted internal proteins within the SARS-CoV-2 virus, rather than the spike protein on the surface of the virus, to protect against infection.

"Our study provides the clearest evidence to date that T cells induced by common cold coronaviruses play a protective role against SARS-CoV-2 infection." Professor Ajit Lalvani Director of the NIHR Respiratory Infections Health Protection Research Unit

Current vaccines do not induce an immune response to these internal proteins. The researchers say that – alongside our existing effective spike protein-targeting vaccines – these internal proteins offer a new vaccine target that could provide long-lasting protection because T cell responses persist longer than antibody responses which wane within a few months of vaccination.

Professor Ajit Lalvani, senior author of the study and Director of the NIHR Respiratory Infections Health Protection Research Unit at Imperial, says: “Our study provides the clearest evidence to date that T cells induced by common cold coronaviruses play a protective role against SARS-CoV-2 infection. These T cells provide protection by attacking proteins within the virus, rather than the spike protein on its surface.

"The spike protein is under intense immune pressure from vaccine-induced antibody which drives evolution of vaccine escape mutants. In contrast, the internal proteins targeted by the protective T cells we identified mutate much less. Consequently, they are highly conserved between the various SARS-CoV-2 variants, including omicron.

"New vaccines that include these conserved, internal proteins would therefore induce broadly protective T cell responses that should protect against current and future SARS-CoV-2 variants.”

The researchers note some limitations to their study, including that, because it is small and 88 percent of participants were of white European ethnicity, it is not possible for them to model demographic factors.

The study was funded by the NIHR Health Protection Research Unit in Respiratory Infections and the Medical Research Council.

'Cross-reactive memory T cells associate with protection against SARS-CoV-2 infection in COVID-19 contacts’ by Kundu et al published today in Nature Communications: https://www.nature.com/articles/s41467-021-27674-x 

URL查看原文
来源平台Imperial College London
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/344067
专题资源环境科学
推荐引用方式
GB/T 7714
admin. T cells from common colds cross-protect against infection with SARS-CoV-2. 2022.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。