GSTDTAP  > 气候变化
DOI10.1111/gcb.15970
Coupling plant litter quantity to a novel metric for litter quality explains C storage changes in a thawing permafrost peatland
Moira Hough; Samantha McCabe; S. Rose Vining; Emily Pickering Pedersen; Rachel M. Wilson; Ryan Lawrence; Kuang-Yu Chang; Gil Bohrer; William J. Riley; Patrick M. Crill; Ruth K. Varner; Steven J. Blazewicz; Ellen Dorrepaal; Malak M. Tfaily; Scott R. Saleska; Virginia I. Rich
2021-11-17
发表期刊Global Change Biology
出版年2021
英文摘要

Permafrost thaw is a major potential feedback source to climate change as it can drive the increased release of greenhouse gases carbon dioxide (CO2) and methane (CH4). This carbon release from the decomposition of thawing soil organic material can be mitigated by increased net primary productivity (NPP) caused by warming, increasing atmospheric CO2, and plant community transition. However, the net effect on C storage also depends on how these plant community changes alter plant litter quantity, quality, and decomposition rates. Predicting decomposition rates based on litter quality remains challenging, but a promising new way forward is to incorporate measures of the energetic favorability to soil microbes of plant biomass decomposition. We asked how the variation in one such measure, the nominal oxidation state of carbon (NOSC), interacts with changing quantities of plant material inputs to influence the net C balance of a thawing permafrost peatland. We found: (1) Plant productivity (NPP) increased post-thaw, but instead of contributing to increased standing biomass, it increased plant biomass turnover via increased litter inputs to soil; (2) Plant litter thermodynamic favorability (NOSC) and decomposition rate both increased post-thaw, despite limited changes in bulk C:N ratios; (3) these increases caused the higher NPP to cycle more rapidly through both plants and soil, contributing to higher CO2 and CH4 fluxes from decomposition. Thus, the increased C-storage expected from higher productivity was limited and the high global warming potential of CH4 contributed a net positive warming effect. Although post-thaw peatlands are currently C sinks due to high NPP offsetting high CO2 release, this status is very sensitive to the plant community's litter input rate and quality. Integration of novel bioavailability metrics based on litter chemistry, including NOSC, into studies of ecosystem dynamics, is needed to improve the understanding of controls on arctic C stocks under continued ecosystem transition.

领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/342037
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Moira Hough,Samantha McCabe,S. Rose Vining,et al. Coupling plant litter quantity to a novel metric for litter quality explains C storage changes in a thawing permafrost peatland[J]. Global Change Biology,2021.
APA Moira Hough.,Samantha McCabe.,S. Rose Vining.,Emily Pickering Pedersen.,Rachel M. Wilson.,...&Virginia I. Rich.(2021).Coupling plant litter quantity to a novel metric for litter quality explains C storage changes in a thawing permafrost peatland.Global Change Biology.
MLA Moira Hough,et al."Coupling plant litter quantity to a novel metric for litter quality explains C storage changes in a thawing permafrost peatland".Global Change Biology (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Moira Hough]的文章
[Samantha McCabe]的文章
[S. Rose Vining]的文章
百度学术
百度学术中相似的文章
[Moira Hough]的文章
[Samantha McCabe]的文章
[S. Rose Vining]的文章
必应学术
必应学术中相似的文章
[Moira Hough]的文章
[Samantha McCabe]的文章
[S. Rose Vining]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。