GSTDTAP  > 气候变化
DOI10.1029/2018JD028573
Satellite-Based Daily PM2.5 Estimates During Fire Seasons in Colorado
Geng, Guannan1; Murray, Nancy L.2; Tong, Daniel3,4,5; Fu, Joshua S.6,7,8; Hu, Xuefei1; Lee, Pius3; Meng, Xia1; Chang, Howard H.2; Liu, Yang1
2018-08-16
发表期刊JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN2169-897X
EISSN2169-8996
出版年2018
卷号123期号:15页码:8159-8171
文章类型Article
语种英语
国家USA
英文摘要

The western United States has experienced increasing wildfire activities, which have negative effects on human health. Epidemiological studies on fine particulate matter (PM2.5) from wildfires are limited by the lack of accurate high-resolution PM2.5 exposure data over fire days. Satellite-based aerosol optical depth (AOD) data can provide additional information in ground PM2.5 concentrations and has been widely used in previous studies. However, the low background concentration, complex terrain, and large wildfire sources add to the challenge of estimating PM2.5 concentrations in the western United States. In this study, we applied a Bayesian ensemble model that combined information from the 1km resolution AOD products derived from the Multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm, Community Multiscale Air Quality (CMAQ) model simulations, and ground measurements to predict daily PM2.5 concentrations over fire seasons (April to September) in Colorado for 2011-2014. Our model had a 10-fold cross-validated R-2 of 0.66 and root-mean-squared error of 2.00g/m(3), outperformed the multistage model, especially on the fire days. Elevated PM2.5 concentrations over large fire events were successfully captured. The modeling technique demonstrated in this study could support future short-term and long-term epidemiological studies of wildfire PM2.5.


Key Points


领域气候变化
收录类别SCI-E
WOS记录号WOS:000443566900021
WOS关键词FINE PARTICULATE MATTER ; AEROSOL OPTICAL DEPTH ; BIOMASS BURNING EMISSIONS ; AIR-POLLUTION ; MODEL DESCRIPTION ; WILDFIRE ; URBAN ; MODIS ; PREDICTION ; RESPONSES
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/34089
专题气候变化
作者单位1.Emory Univ, Rollins Sch Publ Hlth, Dept Environm Hlth, Atlanta, GA 30322 USA;
2.Emory Univ, Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA;
3.NOAA, Air Resources Lab, College Pk, MD USA;
4.George Mason Univ, Ctr Spatial Informat Sci & Syst, Fairfax, VA 22030 USA;
5.Univ Maryland, Cooperat Inst Climate & Satellites, College Pk, MD 20742 USA;
6.Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA;
7.Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA;
8.Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA
推荐引用方式
GB/T 7714
Geng, Guannan,Murray, Nancy L.,Tong, Daniel,et al. Satellite-Based Daily PM2.5 Estimates During Fire Seasons in Colorado[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2018,123(15):8159-8171.
APA Geng, Guannan.,Murray, Nancy L..,Tong, Daniel.,Fu, Joshua S..,Hu, Xuefei.,...&Liu, Yang.(2018).Satellite-Based Daily PM2.5 Estimates During Fire Seasons in Colorado.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,123(15),8159-8171.
MLA Geng, Guannan,et al."Satellite-Based Daily PM2.5 Estimates During Fire Seasons in Colorado".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 123.15(2018):8159-8171.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Geng, Guannan]的文章
[Murray, Nancy L.]的文章
[Tong, Daniel]的文章
百度学术
百度学术中相似的文章
[Geng, Guannan]的文章
[Murray, Nancy L.]的文章
[Tong, Daniel]的文章
必应学术
必应学术中相似的文章
[Geng, Guannan]的文章
[Murray, Nancy L.]的文章
[Tong, Daniel]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。