GSTDTAP  > 资源环境科学
DOI10.1029/2021WR029754
Deep Convolutional Autoencoders for Robust Flow Model Calibration under Uncertainty in Geologic Continuity
Anyue Jiang; Behnam Jafarpour
2021-10-09
发表期刊Water Resources Research
出版年2021
英文摘要

Subsurface flow model calibration is commonly performed by assuming that a known conceptual model of geologic continuity is available and can be used to constrain the solution search space. In real applications, however, the knowledge about geologic continuity is far from certain and subjective interpretations can lead to multiple distinct plausible geologic scenarios. Conventional parameterization methods that are widely used in model calibration, such as the Principal Component Analysis, encounter difficulty in capturing diverse spatial patterns from distinct geologic scenarios. We propose a special type of deep learning architecture, known as variational auto-encoder, for robust dimension-reduced parameterization of spatially distributed aquifer properties, such as hydraulic conductivity, in solving model calibration problems under uncertain geostatistical models. We show that convolutional autoencoders offer the versatility and robustness required for nonlinear parameterization of complex subsurface flow property distributions when multiple distinct geologic scenarios are present. The robustness of these models results, in part, from the use of many convolutional filters that afford the redundancy needed to extract, classify and encode very diverse spatial patterns at different abstraction levels/scales into the low-dimensional latent variables. The resulting latent variables control the salient spatial patterns in different geologic continuity models and are effective for parameterization of model calibration problems under uncertainty in geologic continuity, a task that is not trivial to accomplish using traditional parameterization methods. Several numerical experiments are used to demonstrate the robustness of convolutional deep learning models for reduced-order parameterization of flow model calibration problems when alternative plausible geologic continuity models are present.

This article is protected by copyright. All rights reserved.

领域资源环境
URL查看原文
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/339777
专题资源环境科学
推荐引用方式
GB/T 7714
Anyue Jiang,Behnam Jafarpour. Deep Convolutional Autoencoders for Robust Flow Model Calibration under Uncertainty in Geologic Continuity[J]. Water Resources Research,2021.
APA Anyue Jiang,&Behnam Jafarpour.(2021).Deep Convolutional Autoencoders for Robust Flow Model Calibration under Uncertainty in Geologic Continuity.Water Resources Research.
MLA Anyue Jiang,et al."Deep Convolutional Autoencoders for Robust Flow Model Calibration under Uncertainty in Geologic Continuity".Water Resources Research (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Anyue Jiang]的文章
[Behnam Jafarpour]的文章
百度学术
百度学术中相似的文章
[Anyue Jiang]的文章
[Behnam Jafarpour]的文章
必应学术
必应学术中相似的文章
[Anyue Jiang]的文章
[Behnam Jafarpour]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。