GSTDTAP  > 资源环境科学
RCTs Against the Machine: Can Machine Learning Prediction Methods Recover Experimental Treatment Effects?
Brian Prest; Casey Wichman; and Karen Palmer
2021-09-29
出版年2021
国家美国
领域资源环境
英文摘要

We investigate how well machine learning counterfactual prediction tools can estimate causal treatment effects. We use three prediction algorithms—XGBoost, random forests, and LASSO—to estimate treatment effects using observational data. We compare those results to causal effects from a randomized experiment for electricity customers who faced critical-peak pricing and information treatments. Our results show that each algorithm replicates the true treatment effects, even when using data from treated households only. Additionally, when using both treatment households and nonexperimental comparison households, simpler difference-in-differences methods replicate the experimental benchmark, suggesting little benefit from ML approaches over standard program evaluation methods.

Click "Download" above to read the full paper.

URL查看原文
来源平台Resources for the Future
文献类型科技报告
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/338371
专题资源环境科学
推荐引用方式
GB/T 7714
Brian Prest,Casey Wichman,and Karen Palmer. RCTs Against the Machine: Can Machine Learning Prediction Methods Recover Experimental Treatment Effects?,2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Brian Prest]的文章
[Casey Wichman]的文章
[and Karen Palmer]的文章
百度学术
百度学术中相似的文章
[Brian Prest]的文章
[Casey Wichman]的文章
[and Karen Palmer]的文章
必应学术
必应学术中相似的文章
[Brian Prest]的文章
[Casey Wichman]的文章
[and Karen Palmer]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。