GSTDTAP  > 气候变化
DOI10.1126/science.abk1176
Pushing low thermal conductivity to the limit
Shi En Kim; David G. Cahill
2021-08-27
发表期刊Science
出版年2021
英文摘要A wide variety of materials with low thermal conductivity find daily use, such as jackets for cold weather and plastic handles of hot metal cooking pots. Even the best thermal insulators still have a finite thermal conductivity because the vibrational motion of atoms is never fully localized and energy is transported through coherent collective vibrations (phonons). Any thermal excitation that is not fully localized can carry heat, which adds to the challenge of realizing materials with ultralow thermal conductivity for real-world applications. On page 1017 of this issue, Gibson et al. ([ 1 ][1]) have an answer to how low thermal conductivity can go. They synthesized layered inorganic bulk crystals and measured a thermal conductivity that is an order of magnitude lower than that of typical oxide glasses and only four times the value of air. The discovery of materials with extreme thermal conductivities is important for many applications, especially in energy systems. Just as dissipation of electrical energy is absent in a perfect electrical insulator or a superconductor, the generation of entropy and the attendant loss of efficiency in thermal processes would be zero for a hypothetical perfect thermal insulator or conductor. Microelectronic systems would also benefit from improved materials. For example, thermally insulating inorganic crystals would be useful for confining heat in thermal devices such as phase-change memory ([ 2 ][2]). Using solid-state chemistry techniques, Gibson et al. synthesized highly anisotropic, ordered-disordered structures in the layered van der Waal crystals Bi2O2Cl2 and Bi2O2Se, as well as the naturally occurring superlattice Bi4O4SeCl2. Instead of controlling the orderliness of atoms in the material (a common route of materials engineering), they manipulated the bond strength and connectivity between interlayer atoms. In crystals, phonon modes channel heat with higher efficiency compared with atoms moving independently. Gibson et al. designed bonding motifs to manipulate the travel velocities of phonons. By tuning interfaces of their material and the choice of the unit cell, they could select for the types of phonons their crystals would let through to produce an exceedingly low thermal conductivity. The inorganic crystals Gibson et al. synthesized join the legion of other materials with extremely low thermal conductivities (see the figure) ([ 3 ][3]). The most notable of these materials are disordered layered transition metal dichalcogenide (TMD) crystals, in which polycrystalline layers are misaligned with respect to the adjacent layers ([ 4 ][4], [ 5 ][5]). These exotic materials undershoot the lower thermal conductivity regime at which scientists once thought thermal conductivity to be “poor” by dipping below the amorphous limit ([ 6 ][6]) designated to materials with similar composition and density but with random atomic placements and bonding. All of these exotic materials that beat lower bounds have a nonintuitive mix of atomic order and disorder in crystals. Previous studies have shown that the deliberate amorphization of the randomly rotated structure of misaligned TMD stacks only raised the thermal conductivity. Thus, some other mechanism not captured by traditional thermal transport models operates in these inorganic crystals. Gibson et al. used a suite of material design parameters that address the failure of traditional theory to universally describe low–thermal conductivity materials. Their strategy was to fabricate ultralow–thermal conductivity crystals with a blend of anharmonicity, anisotropy, and partial atomic disorder. Their material defies any particular category of low–thermal conductivity materials that are better understood, such as fully disordered harmonic glasses ([ 7 ][7]) and strongly disordered crystals ([ 8 ][8]). Yet, even the theoretical descriptions of these established material groups suffer from gaps. Although perfect crystals with weak anharmonicity are well understood ([ 9 ][9]), strong anharmonicity that drives the phonon mean free path down to the wavelength of the phonon itself makes the assumptions of the theory invalid. A recent example is Tl3VSe4 ([ 10 ][10]). The difficulty in describing phonon transport in such materials has practical implications. For example, it impairs assessing the potential efficiency of materials as thermoelectrics for interconversion of heat and electrical power. ![Figure][11] Strategies for ultralow thermal conductivity Different types of atomic arrangements in materials can interfere with transport of coherent lattice vibrations (phonons) and lead to low thermal conductivity. In the material developed by Gibson et al. , all three effects are incorporated. GRAPHIC: N. DESAI/ SCIENCE Recent research by Simoncelli et al. ([ 11 ][12]) elucidated low–thermal conductivity transport phenomena where traditional models fail. They developed a phonon thermal conductivity model to unify the well-developed descriptions for harmonic glasses and for weakly anharmonic crystals and then applied this approach to understanding the low thermal conductivity of the isotropic perovskite CsPbBr3. Their approach could guide experimentalists trying to find materials with even lower thermal conductivities. A critical test of the validity of this approach is challenging, however. Thermal conductivity integrates heat carried by a broad spectrum of thermally excited vibrations. Thus, thermal transport measurements are not sensitive to these individual spectral features for any theory to be rigorously tested. A fully validated and comprehensive theory that bridges the entire thermal conductivity spectrum and is universally applicable to most, if not all, materials, is still lacking. For example, the theoretical understanding of thermal conductivity transport in disordered soft materials, such as amorphous and liquid crystalline polymers, is incomplete. Like many previous studies, Gibson’s et al. ’s explanation for the crystals’ ultralow thermal conductivity may work well in this particular instance but may not be generalizable. For low–thermal conductivity materials in general, theory and experiment need to be reconciled, and the limited theoretical understanding of thermal transport remains at a bottleneck even as the list of exotic thermal conductors grows. 1. [↵][13]1. Q. D. Gibson et al ., Science 373, 1017 (2021). [OpenUrl][14][Abstract/FREE Full Text][15] 2. [↵][16]1. H. Kwon et al ., Nano Lett. 21, 5984 (2021). [OpenUrl][17] 3. [↵][18]1. M. Beekman, 2. D. G. Cahill , Cryst. Res. Technol. 52, 1700114 (2017). [OpenUrl][19] 4. [↵][20]1. C. Chiritescu et al ., Science 315, 351 (2007). [OpenUrl][21][Abstract/FREE Full Text][22] 5. [↵][23]1. D. Li, 2. A. Schleife, 3. D. G. Cahill, 4. G. Mitchson, 5. D. C. Johnson , Phys. Rev. Mater. 3, 043607 (2019). [OpenUrl][24] 6. [↵][25]1. F. Seitz, 2. D. Turnbull 1. G. A. Slack , Thermal Conductivity of Non-metallic Crystals, in Solid State Physics, F. Seitz, D. Turnbull, Eds. (Academic Press, 1979), vol. 34, p. 57. [OpenUrl][26] 7. [↵][27]1. J. L. Feldman, 2. M. D. Kluge, 3. P. B. Allen, 4. F. Wooten , Phys. Rev. B Condens. Matter 48, 12589 (1993). [OpenUrl][28][CrossRef][29][PubMed][30] 8. [↵][31]1. D. G. Cahill, 2. S. K. Watson, 3. R. O. Pohl , Phys. Rev. B Condens. Matter 46, 6131 (1992). [OpenUrl][32][CrossRef][33][PubMed][34] 9. [↵][35]1. L. Lindsay, 2. A. Katre, 3. A. Cepellotti, 4. N. Mingo , J. Appl. Phys. 126, 050902 (2019). [OpenUrl][36] 10. [↵][37]1. Z. Zeng et al ., Phys. Rev. B 103, 224307 (2021). [OpenUrl][38] 11. [↵][39]1. M. Simoncelli, 2. N. Marzari, 3. F. Mauri , Nat. Phys. 15, 809 (2019). [OpenUrl][40][CrossRef][41] [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: #ref-6 [7]: #ref-7 [8]: #ref-8 [9]: #ref-9 [10]: #ref-10 [11]: pending:yes [12]: #ref-11 [13]: #xref-ref-1-1 "View reference 1 in text" [14]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DGibson%26rft.auinit1%253DQ.%2BD.%26rft.volume%253D373%26rft.issue%253D6558%26rft.spage%253D1017%26rft.epage%253D1022%26rft.atitle%253DLow%2Bthermal%2Bconductivity%2Bin%2Ba%2Bmodular%2Binorganic%2Bmaterial%2Bwith%2Bbonding%2Banisotropy%2Band%2Bmismatch%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.abh1619%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [15]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzNzMvNjU1OC8xMDE3IjtzOjQ6ImF0b20iO3M6MjI6Ii9zY2kvMzczLzY1NTgvOTYzLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [16]: #xref-ref-2-1 "View reference 2 in text" [17]: {openurl}?query=rft.jtitle%253DNano%2BLett.%26rft.volume%253D21%26rft.spage%253D5984%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [18]: #xref-ref-3-1 "View reference 3 in text" [19]: {openurl}?query=rft.jtitle%253DCryst.%2BRes.%2BTechnol.%26rft.volume%253D52%26rft.spage%253D1700114%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [20]: #xref-ref-4-1 "View reference 4 in text" [21]: {openurl}?query=rft.jtitle%253DScience%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.1136494%26rft_id%253Dinfo%253Apmid%252F17170252%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [22]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzMTUvNTgxMC8zNTEiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzMvNjU1OC85NjMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [23]: #xref-ref-5-1 "View reference 5 in text" [24]: {openurl}?query=rft.jtitle%253DPhys.%2BRev.%2BMater.%26rft.volume%253D3%26rft.spage%253D043607%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [25]: #xref-ref-6-1 "View reference 6 in text" [26]: {openurl}?query=rft.jtitle%253DThermal%2BConductivity%2Bof%2BNon-metallic%2BCrystals%252C%2Bin%2BSolid%2BState%2BPhysics%26rft.volume%253D34%26rft.spage%253D57%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [27]: #xref-ref-7-1 "View reference 7 in text" [28]: {openurl}?query=rft.jtitle%253DPhysical%2BReview%252C%2BB%253A%2BCondensed%2BMatter%26rft.stitle%253DPhysical%2BReview%252C%2BB%253A%2BCondensed%2BMatter%26rft.aulast%253DFeldman%26rft.auinit1%253DJ.%2BL.%26rft.volume%253D48%26rft.issue%253D17%26rft.spage%253D12589%26rft.epage%253D12602%26rft.atitle%253DThermal%2Bconductivity%2Band%2Blocalization%2Bin%2Bglasses%253A%2BNumerical%2Bstudy%2Bof%2Ba%2Bmodel%2Bof%2Bamorphous%2Bsilicon.%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevB.48.12589%26rft_id%253Dinfo%253Apmid%252F10007627%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [29]: /lookup/external-ref?access_num=10.1103/PhysRevB.48.12589&link_type=DOI [30]: /lookup/external-ref?access_num=10007627&link_type=MED&atom=%2Fsci%2F373%2F6558%2F963.atom [31]: #xref-ref-8-1 "View reference 8 in text" [32]: {openurl}?query=rft.jtitle%253DPhysical%2BReview%252C%2BB%253A%2BCondensed%2BMatter%26rft.stitle%253DPhysical%2BReview%252C%2BB%253A%2BCondensed%2BMatter%26rft.aulast%253DCahill%26rft.auinit1%253DD.%2BG.%26rft.volume%253D46%26rft.issue%253D10%26rft.spage%253D6131%26rft.epage%253D6140%26rft.atitle%253DLower%2Blimit%2Bto%2Bthe%2Bthermal%2Bconductivity%2Bof%2Bdisordered%2Bcrystals.%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevB.46.6131%26rft_id%253Dinfo%253Apmid%252F10002297%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [33]: /lookup/external-ref?access_num=10.1103/PhysRevB.46.6131&link_type=DOI [34]: /lookup/external-ref?access_num=10002297&link_type=MED&atom=%2Fsci%2F373%2F6558%2F963.atom [35]: #xref-ref-9-1 "View reference 9 in text" [36]: {openurl}?query=rft.jtitle%253DJ.%2BAppl.%2BPhys.%26rft.volume%253D126%26rft.spage%253D050902%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [37]: #xref-ref-10-1 "View reference 10 in text" [38]: {openurl}?query=rft.jtitle%253DPhys.%2BRev.%2BB%26rft.volume%253D103%26rft.spage%253D224307%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [39]: #xref-ref-11-1 "View reference 11 in text" [40]: {openurl}?query=rft.jtitle%253DNat.%2BPhys.%26rft.volume%253D15%26rft.spage%253D809%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fs41567-019-0520-x%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [41]: /lookup/external-ref?access_num=10.1038/s41567-019-0520-x&link_type=DOI
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/336638
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Shi En Kim,David G. Cahill. Pushing low thermal conductivity to the limit[J]. Science,2021.
APA Shi En Kim,&David G. Cahill.(2021).Pushing low thermal conductivity to the limit.Science.
MLA Shi En Kim,et al."Pushing low thermal conductivity to the limit".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shi En Kim]的文章
[David G. Cahill]的文章
百度学术
百度学术中相似的文章
[Shi En Kim]的文章
[David G. Cahill]的文章
必应学术
必应学术中相似的文章
[Shi En Kim]的文章
[David G. Cahill]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。