GSTDTAP  > 气候变化
DOI10.1126/science.abj8193
Driving multiphase superconductivity
Alexandre Pourret; Georg Knebel
2021-08-27
发表期刊Science
出版年2021
英文摘要Symmetry and symmetry breaking are keys to much of the interesting phenomena in condensed matter physics. Conventional superconductivity, for example, requires both time reversal and inversion symmetry, and the removal of one of these (such as time reversal through a magnetic field) leads to the suppression of the superconducting order. Recently, there is a realization that even if the global symmetry of the system is present, a local symmetry breaking can still induce a variety of fascinating behaviors. On page 1012 of this issue, S. Khim et al. ([ 1 ][1]) report on field-induced transition within the superconducting state of CeRh2As2 driven by local inversion-symmetry breaking. In a three-dimensional superconductor, inversion and time-reversal symmetry are the only symmetries that ensure that a fermionic state with momentum k is energy degenerate with another state at – k . This degeneracy is necessary to support a weak-coupling superconducting instability because of the formation of Cooper pairs with total momentum q = 0. Consequently, these two symmetries are at the basis of the usual classification of even-parity (spin-singlet) and odd-parity (spin-triplet) Cooper pairs that result from the Pauli exclusion principle, which requires a completely antisymmetric wave function for indistinguishable fermions. In non-centrosymmetric heavy-fermion superconductors ([ 2 ][2])—such as CePt3Si ([ 3 ][3]), CeIrSi3 ([ 4 ][4]), CeCoGe3 ([ 5 ][5]), and CeRhSi3 ([ 6 ][6])—the lack of inversion symmetry introduces a mixing of even and odd parity pairing states. These mixed states generally reveal no Pauli paramagnetic limit. This leads to what is probably the most spectacular experimental result, the observation of extremely high upper critical fields for a field applied in the direction lacking mirror symmetry—that is, perpendicular to the basal plane (see the figure). The heavy fermion material Khim et al. studied, CeRh2As2, is a variant of non-centrosymmetric superconductors. The crystal structure is globally centrosymmetric (with well-defined inversion centers) but is locally non-centrosymmetric, with an inversion symmetry linking two non-centrosymmetric Ce-square lattices. This configuration can be compared with the relation between ferromagnetic (FM) and antiferromagnetic (AF) structures. The FM state globally breaks time-reversal symmetry; the AF state does not but has two sublattices of subunits violating time-reversal symmetry. The consequence of such a structure in CeRh2As2 is that even-parity (spin-singlet) and odd-parity (spin-triplet) Cooper pairs are not mixed, so that a phase transition between even- and odd-parity condensates should occur inside the superconducting condensate. ![Figure][7] A local departure from global symmetry CeRh2As2 is among the non-centrosymmetric superconductors (NCSs) that feature a high critical magnetic field ( H c or H c2) divided by the superconducting temperature ( T c). The high value at low T c comes out of the distinct crystal structure. GRAPHIC: N. CARY/ SCIENCE S. Khim et al observed a clear phase transition between two superconducting phases for field parallel to the c axis. The observation of multiple superconducting phases is restricted to only a few materials. The theoretical approach to model the superconducting state involves two different channels of the pairing interaction based on a spin-singlet pairing between electrons on the same Ce sublattice. The first pairing channel implies an even-parity state in which the Cooper pair wave function on these two sublattices has the same sign, and the second one is the odd-parity state in which the Cooper pair wave function has opposite sign on the different sublattices. The even-parity channel is expected to have the higher superconducting transition temperature and is also more strongly suppressed by a Zeeman field, which allows the odd-parity solution to appear at higher fields. The competition between these channels is controlled by details of the electronic structure. In particular, when the Rashba spin-orbit coupling (SOC) because of the locally broken inversion symmetry is larger than the intersublattice hopping, this gives rise to near-degenerate even- and odd-parity pairing states and a substantial enhancement of the superconducting upper critical field ([ 7 ][8]). The discovery by the authors of a transition between two distinct superconducting phases under the application of a magnetic field in CeRh2As2 coincides with a renewal of interest in odd-parity superconducting pairing states. Similar transition has been observed under pressure inside the superconducting phase ([ 8 ][9]) of the recently discovered heavy fermion superconductor UTe2 ([ 9 ][10], [ 10 ][11]). In contrast to CeRh2As2, the superconducting phases in UTe2 are believed to be all spin triplet, and rather than Rashba spin-orbit coupling, spin fluctuations are thought to be the driving force of the relevant physics. Beside the pairing mechanism being different, the presence of spin triplet pairing in both systems is at the origin of similar unconventional features such as the very high upper critical field, anisotropy of the upper critical field, and multiple superconducting phases. Today, odd-parity superconductors may play a central role for quantum materials science because they can host nontrivial topological phenomena. In quantum engineering science, a strong effort has been made to induce odd-parity superconductivity in ferromagnetic materials through proximity effect in nanoscale devices. The discovery of new quantum materials—such as CeRh2As2, in which such possibly topological superconducting states appear naturally in bulk—creates an opportunity to study new emergent phenomena in condensed matter physics. 1. [↵][12]1. S. Khim et al ., Science 373, 1012 (2021). [OpenUrl][13][Abstract/FREE Full Text][14] 2. [↵][15]1. M. Sigrist et al ., J. Phys. Soc. Jpn. 83, 061014 (2014). [OpenUrl][16][CrossRef][17] 3. [↵][18]1. E. Bauer et al ., Phys. Rev. Lett. 92, 027003 (2004). [OpenUrl][19][PubMed][20] 4. [↵][21]1. T. Akazawa et al ., J. Phys. Soc. Jpn. 73, 3129 (2004). [OpenUrl][22] 5. [↵][23]1. A. Thamizhavel et al ., J. Phys. Soc. Jpn. 74, 1858 (2005). [OpenUrl][24] 6. [↵][25]1. N. Kimura et al ., Phys. Rev. Lett. 95, 247004 (2005). [OpenUrl][26][CrossRef][27][PubMed][28] 7. [↵][29]1. D. C. Cavanagh, 2. T. Shishidou, 3. M. Weinert, 4. P. M. R. Brydon, 5. D. F. Agterberg , arXiv:2106.02698 [cond-mat.supr-con] (2021). 8. [↵][30]1. D. Braithwaite et al ., Commun. Phys. 2, 147 (2019). [OpenUrl][31][CrossRef][32] 9. [↵][33]1. S. Ran et al ., Science 365, 684 (2019). [OpenUrl][34][Abstract/FREE Full Text][35] 10. [↵][36]1. D. Aoki et al ., J. Phys. Soc. Jpn. 88, 043702 (2019). [OpenUrl][37][CrossRef][38] [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: #ref-6 [7]: pending:yes [8]: #ref-7 [9]: #ref-8 [10]: #ref-9 [11]: #ref-10 [12]: #xref-ref-1-1 "View reference 1 in text" [13]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DKhim%26rft.auinit1%253DS.%26rft.volume%253D373%26rft.issue%253D6558%26rft.spage%253D1012%26rft.epage%253D1016%26rft.atitle%253DField-induced%2Btransition%2Bwithin%2Bthe%2Bsuperconducting%2Bstate%2Bof%2BCeRh2As2%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.abe7518%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [14]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzNzMvNjU1OC8xMDEyIjtzOjQ6ImF0b20iO3M6MjI6Ii9zY2kvMzczLzY1NTgvOTYyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [15]: #xref-ref-2-1 "View reference 2 in text" [16]: {openurl}?query=rft.jtitle%253DJ.%2BPhys.%2BSoc.%2BJpn.%26rft.volume%253D83%26rft.spage%253D061014%26rft_id%253Dinfo%253Adoi%252F10.7566%252FJPSJ.83.061014%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [17]: /lookup/external-ref?access_num=10.7566/JPSJ.83.061014&link_type=DOI [18]: #xref-ref-3-1 "View reference 3 in text" [19]: {openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DBauer%26rft.auinit1%253DE.%26rft.volume%253D92%26rft.issue%253D2%26rft.spage%253D027003%26rft.epage%253D027003%26rft.atitle%253DHeavy%2Bfermion%2Bsuperconductivity%2Band%2Bmagnetic%2Border%2Bin%2Bnoncentrosymmetric%2BCePt3Si.%26rft_id%253Dinfo%253Apmid%252F14753961%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [20]: /lookup/external-ref?access_num=14753961&link_type=MED&atom=%2Fsci%2F373%2F6558%2F962.atom [21]: #xref-ref-4-1 "View reference 4 in text" [22]: {openurl}?query=rft.jtitle%253DJ.%2BPhys.%2BSoc.%2BJpn.%26rft.volume%253D73%26rft.spage%253D3129%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [23]: #xref-ref-5-1 "View reference 5 in text" [24]: {openurl}?query=rft.jtitle%253DJ.%2BPhys.%2BSoc.%2BJpn.%26rft.volume%253D74%26rft.spage%253D1858%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [25]: #xref-ref-6-1 "View reference 6 in text" [26]: {openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DKimura%26rft.auinit1%253DN.%26rft.volume%253D95%26rft.issue%253D24%26rft.spage%253D247004%26rft.epage%253D247004%26rft.atitle%253DPressure-induced%2Bsuperconductivity%2Bin%2Bnoncentrosymmetric%2Bheavy-fermion%2BCeRhSi3.%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.95.247004%26rft_id%253Dinfo%253Apmid%252F16384411%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [27]: /lookup/external-ref?access_num=10.1103/PhysRevLett.95.247004&link_type=DOI [28]: /lookup/external-ref?access_num=16384411&link_type=MED&atom=%2Fsci%2F373%2F6558%2F962.atom [29]: #xref-ref-7-1 "View reference 7 in text" [30]: #xref-ref-8-1 "View reference 8 in text" [31]: {openurl}?query=rft.jtitle%253DCommun.%2BPhys.%26rft.volume%253D2%26rft.spage%253D147%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fs42005-019-0248-z%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [32]: /lookup/external-ref?access_num=10.1038/s42005-019-0248-z&link_type=DOI [33]: #xref-ref-9-1 "View reference 9 in text" [34]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DRan%26rft.auinit1%253DS.%26rft.volume%253D365%26rft.issue%253D6454%26rft.spage%253D684%26rft.epage%253D687%26rft.atitle%253DNearly%2Bferromagnetic%2Bspin-triplet%2Bsuperconductivity%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aav8645%26rft_id%253Dinfo%253Apmid%252F31416960%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [35]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNjUvNjQ1NC82ODQiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzMvNjU1OC85NjIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [36]: #xref-ref-10-1 "View reference 10 in text" [37]: {openurl}?query=rft.jtitle%253DJ.%2BPhys.%2BSoc.%2BJpn.%26rft.volume%253D88%26rft.spage%253D043702%26rft_id%253Dinfo%253Adoi%252F10.7566%252FJPSJ.88.043702%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [38]: /lookup/external-ref?access_num=10.7566/JPSJ.88.043702&link_type=DOI
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/336636
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Alexandre Pourret,Georg Knebel. Driving multiphase superconductivity[J]. Science,2021.
APA Alexandre Pourret,&Georg Knebel.(2021).Driving multiphase superconductivity.Science.
MLA Alexandre Pourret,et al."Driving multiphase superconductivity".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Alexandre Pourret]的文章
[Georg Knebel]的文章
百度学术
百度学术中相似的文章
[Alexandre Pourret]的文章
[Georg Knebel]的文章
必应学术
必应学术中相似的文章
[Alexandre Pourret]的文章
[Georg Knebel]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。