GSTDTAP  > 气候变化
DOI10.1126/science.abj0412
Watching a hydroperoxyalkyl radical (•QOOH) dissociate
Anne S. Hansen; Trisha Bhagde; Kevin B. Moore; Daniel R. Moberg; Ahren W. Jasper; Yuri Georgievskii; Michael F. Vansco; Stephen J. Klippenstein; Marsha I. Lester
2021-08-06
发表期刊Science
出版年2021
英文摘要Carbon-centered radicals containing the hydroperoxy group, commonly denoted as •QOOH, are elusive but are among the most critical intermediate species for kinetic modeling of hydrocarbon oxidation in various atmospheric and combustion processes. Their direct experimental observation is a long-standing challenge, with only one successful previous attempt. Using a combination of infrared activation spectroscopy and ultraviolet laser–induced fluorescence detection, Hansen et al. directly characterized the vibrational structure of a •QOOH intermediate in isobutane oxidation, collisionally stabilized and isolated, and followed its dissociative evolution under infrared activation with time and energy resolution. High-level electronic structure calculations revealed an important role of heavy-atom tunneling in this process. Science , abj0412, this issue p. [679][1] A prototypical hydroperoxyalkyl radical (•QOOH) intermediate, transiently formed in the oxidation of volatile organic compounds, was directly observed through its infrared fingerprint and energy-dependent unimolecular decay to hydroxyl radical and cyclic ether products. Direct time-domain measurements of •QOOH unimolecular dissociation rates over a wide range of energies were found to be in accord with those predicted theoretically using state-of-the-art electronic structure characterizations of the transition state barrier region. Unimolecular decay was enhanced by substantial heavy-atom tunneling involving O-O elongation and C-C-O angle contraction along the reaction pathway. Master equation modeling yielded a fully a priori prediction of the pressure-dependent thermal unimolecular dissociation rates for the •QOOH intermediate—again increased by heavy-atom tunneling—which are required for global models of atmospheric and combustion chemistry. [1]: /lookup/doi/10.1126/science.abj0412
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/335578
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Anne S. Hansen,Trisha Bhagde,Kevin B. Moore,等. Watching a hydroperoxyalkyl radical (•QOOH) dissociate[J]. Science,2021.
APA Anne S. Hansen.,Trisha Bhagde.,Kevin B. Moore.,Daniel R. Moberg.,Ahren W. Jasper.,...&Marsha I. Lester.(2021).Watching a hydroperoxyalkyl radical (•QOOH) dissociate.Science.
MLA Anne S. Hansen,et al."Watching a hydroperoxyalkyl radical (•QOOH) dissociate".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Anne S. Hansen]的文章
[Trisha Bhagde]的文章
[Kevin B. Moore]的文章
百度学术
百度学术中相似的文章
[Anne S. Hansen]的文章
[Trisha Bhagde]的文章
[Kevin B. Moore]的文章
必应学术
必应学术中相似的文章
[Anne S. Hansen]的文章
[Trisha Bhagde]的文章
[Kevin B. Moore]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。