GSTDTAP  > 气候变化
DOI10.1126/science.abj5860
Proximity and single-molecule energetics
Linfei Li; Nan Jiang
2021-07-23
发表期刊Science
出版年2021
英文摘要Probing single molecules in their nanoenvironment can reveal site-specific phenomena that would be obscured by ensemble-averaging experiments on macroscopic populations of molecules. Particularly in the past decade, major technological breakthroughs in scanning probe microscopy (SPM) have led to unprecedented spatial resolution and versatility and enabled the interrogation of molecular conformation, bond order, molecular orbitals, charge states, spins, phonons, and intermolecular interactions. On page 452 of this issue, Peng et al. ([ 1 ][1]) use SPM to directly measure the triplet lifetime of an individual pentacene molecule and demonstrate its dependence on interactions with nearby oxygen molecules with atomic precision. In addition to allowing the local tuning and probing of spin-spin interactions between molecules, this study represents a notable advance in the single-molecule regime and provides insights into many macroscopic behaviors and related applications in catalysis, energy-conversion materials, or biological systems. Single-molecule studies have benefited from the high resolution achieved with well-defined functionalized probes, especially with carbon monoxide–terminated atomic force microscopy (AFM) tips ([ 2 ][2]). The versatility and applicability of AFM have also been enhanced by biasing the tip with gate voltages and supporting molecules on insulating substrates. In this configuration, the conductive AFM tip serves as an atomically controlled charge injector with single-charge sensitivity. Such electrical addressing of electronic states of single molecules ([ 3 ][3]) allows for the study of charge distribution and transport in single-molecule devices, organic electronics, and photovoltaics. Beyond steady-state spectroscopy, excited-state dynamics of single molecules can be measured by using an ultrashort and high-intensity electric (voltage) or optical (laser) pulse (the “pump”) to excite the sample. After a nonequilibrium state is generated, a second weaker pulse (the “probe”) monitors the change of the excited state. By varying the time delay between the two pulses, the temporal evolution of the excited state can be mapped out. Peng et al. used the electronic pump-probe approach in AFM to measure the lifetime of the excited triplet state of an individual pentacene molecule with atomic precision (see the figure). They observed strong quenching of the triplet lifetime by co-adsorbed molecular oxygen (O2). The electronic energy-transfer processes had an intriguing dependence on the arrangement of surrounding O2 molecules, which they controlled by atomic manipulation with the tip. Spin-relaxation measurements of single molecules in space with atomic resolution provide insights into their local interactions with each other, as well as with their nanoenvironment. Such information could be useful for spin-based quantum-information storage or quantum computing ([ 4 ][4]). Given the radiative relaxation of excited states, SPM-coupled optical spectroscopy provides a powerful tool to perform spatially and energy-resolved spectroscopic studies of single molecules. Specifically, site-resolved excitations of molecules can be induced by highly localized scanning tunnel microscopy (STM) current, and the resulting luminescence, which carries information that describes excited states, can be probed by integrated optical detection systems. This approach revealed redox state–dependent excitation of single molecules and intermolecular excitonic coupling interactions with atomic-scale spatial precision ([ 5 ][5], [ 6 ][6]). A study of electroluminescence demonstrated selective triplet formation by manipulating electron spin inside a molecule ([ 7 ][7]), which could provide a route to interrogate quantum spintronics and organic electronics at the single-molecule level. Besides tunneling electrons, the interaction of photons with molecules can provide valuable structural information and chemical identification through measurements of absorption, emission, or scattering of light. In particular, by confining laser light at the atomic-scale SPM junction and taking advantage of plasmon-enhanced Raman scattering, tip-enhanced Raman spectroscopy can overcome the diffraction limit of conventional optical spectroscopy and thereby achieve submolecular chemical spatial resolution ([ 8 ][8]). Such capability provides in-depth insights into single-molecule chemistry and site-specific chemical effects at the spatial limit ([ 9 ][9]). ![Figure][10] Atomically addressing excited single molecules The effect of nearby oxygen molecules on the lifetimes (τ) of triplet states T x , T y , and T z or T1 decaying to the singlet state S of individual pentacene molecules has been probed on an insulating salt surface. GRAPHIC: V. ALTOUNIAN/ SCIENCE Most excited states induced by photon absorption are incredibly short-lived (on the order of picoseconds to femtoseconds), so time-resolved optical STM techniques have been developed with ultrafast lasers. For example, pump-probe terahertz laser pulses were used to induce state-selective ultrafast STM tunneling currents through a single molecule. This approach allowed the molecular orbital structure and vibrations to be measured directly on the femtosecond time scale ([ 10 ][11]). Optical STM further showed the capability to explore photon and field-driven tunneling with angstrom-scale spatial resolution and attosecond temporal resolution. This experimental platform can be used to study quasiparticle dynamics in superconductor and two-dimensional materials with exceptional resolutions ([ 11 ][12]). Single-molecule studies could open avenues to access extremely transient states and chemical heterogeneity, suc h as the vibration of atoms within a molecule, the precession of a spin, ultrashort-lived complex reaction intermediates, and some key stochastic processes of reactions in chemistry and biology. For example, the study of Peng et al. relates to the reactivity of electronic excited states of organic molecules to O2 (and thus air). These processes can affect various natural photochemical and photophysical processes undergoing excitation by sunligh that can lead to transformation, degradation, or aging ([ 12 ][13]). The insightful descriptions of molecular conformation, dynamics, and function provided by spatially resolved single-molecule studies could inform complex and emergent behaviors of populations of molecules or even cells. 1. [↵][14]1. J. Peng et al ., Science 373, 452 (2021). [OpenUrl][15][Abstract/FREE Full Text][16] 2. [↵][17]1. L. Gross, 2. F. Mohn, 3. N. Moll, 4. P. Liljeroth, 5. G. Meyer , Science 325, 1110 (2009). [OpenUrl][18][Abstract/FREE Full Text][19] 3. [↵][20]1. S. Fatayer et al ., Nat. Nanotechnol. 13, 376 (2018). [OpenUrl][21][CrossRef][22][PubMed][23] 4. [↵][24]1. M. N. Leuenberger, 2. D. Loss , Nature 410, 789 (2001). [OpenUrl][25][CrossRef][26][PubMed][27] 5. [↵][28]1. Y. Zhang et al ., Nature 531, 623 (2016). [OpenUrl][29][CrossRef][30][PubMed][31] 6. [↵][32]1. B. Doppagne et al ., Science 361, 251 (2018). [OpenUrl][33][Abstract/FREE Full Text][34] 7. [↵][35]1. K. Kimura et al ., Nature 570, 210 (2019). [OpenUrl][36][CrossRef][37][PubMed][38] 8. [↵][39]1. J. Lee, 2. K. T. Crampton, 3. N. Tallarida, 4. V. A. Apkarian , Nature 568, 78 (2019). [OpenUrl][40][CrossRef][41][PubMed][42] 9. [↵][43]1. S. Mahapatra, 2. L. Li, 3. J. F. Schultz, 4. N. Jiang , J. Chem. Phys. 153, 010902 (2020). [OpenUrl][44] 10. [↵][45]1. T. L. Cocker, 2. D. Peller, 3. P. Yu, 4. J. Repp, 5. R. Huber , Nature 539, 263 (2016). [OpenUrl][46][CrossRef][47][PubMed][48] 11. [↵][49]1. M. Garg, 2. K. Kern , Science 367, 411 (2020). [OpenUrl][50][Abstract/FREE Full Text][51] 12. [↵][52]1. P. R. Ogilby , Chem. Soc. Rev. 39, 3181 (2010). [OpenUrl][53][CrossRef][54][PubMed][55] Acknowledgments: We acknowledge support from the National Science Foundation (CHE-1944796). [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: #ref-6 [7]: #ref-7 [8]: #ref-8 [9]: #ref-9 [10]: pending:yes [11]: #ref-10 [12]: #ref-11 [13]: #ref-12 [14]: #xref-ref-1-1 "View reference 1 in text" [15]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DPeng%26rft.auinit1%253DJ.%26rft.volume%253D373%26rft.issue%253D6553%26rft.spage%253D452%26rft.epage%253D456%26rft.atitle%253DAtomically%2Bresolved%2Bsingle-molecule%2Btriplet%2Bquenching%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.abh1155%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [16]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNzMvNjU1My80NTIiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzMvNjU1My8zOTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [17]: #xref-ref-2-1 "View reference 2 in text" [18]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DGross%26rft.auinit1%253DL.%26rft.volume%253D325%26rft.issue%253D5944%26rft.spage%253D1110%26rft.epage%253D1114%26rft.atitle%253DThe%2BChemical%2BStructure%2Bof%2Ba%2BMolecule%2BResolved%2Bby%2BAtomic%2BForce%2BMicroscopy%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.1176210%26rft_id%253Dinfo%253Apmid%252F19713523%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [19]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzMjUvNTk0NC8xMTEwIjtzOjQ6ImF0b20iO3M6MjI6Ii9zY2kvMzczLzY1NTMvMzkyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [20]: #xref-ref-3-1 "View reference 3 in text" [21]: {openurl}?query=rft.jtitle%253DNat.%2BNanotechnol.%26rft.volume%253D13%26rft.spage%253D376%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fs41565-018-0087-1%26rft_id%253Dinfo%253Apmid%252F29662243%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [22]: /lookup/external-ref?access_num=10.1038/s41565-018-0087-1&link_type=DOI [23]: /lookup/external-ref?access_num=29662243&link_type=MED&atom=%2Fsci%2F373%2F6553%2F392.atom [24]: #xref-ref-4-1 "View reference 4 in text" [25]: {openurl}?query=rft.jtitle%253DNature%26rft.stitle%253DNature%26rft.aulast%253DLeuenberger%26rft.auinit1%253DM.%2BN.%26rft.volume%253D410%26rft.issue%253D6830%26rft.spage%253D789%26rft.epage%253D793%26rft.atitle%253DQuantum%2Bcomputing%2Bin%2Bmolecular%2Bmagnets.%26rft_id%253Dinfo%253Adoi%252F10.1038%252F35071024%26rft_id%253Dinfo%253Apmid%252F11298441%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [26]: /lookup/external-ref?access_num=10.1038/35071024&link_type=DOI [27]: /lookup/external-ref?access_num=11298441&link_type=MED&atom=%2Fsci%2F373%2F6553%2F392.atom [28]: #xref-ref-5-1 "View reference 5 in text" [29]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D531%26rft.spage%253D623%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnature17428%26rft_id%253Dinfo%253Apmid%252F27029277%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [30]: /lookup/external-ref?access_num=10.1038/nature17428&link_type=DOI [31]: /lookup/external-ref?access_num=27029277&link_type=MED&atom=%2Fsci%2F373%2F6553%2F392.atom [32]: #xref-ref-6-1 "View reference 6 in text" [33]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DDoppagne%26rft.auinit1%253DB.%26rft.volume%253D361%26rft.issue%253D6399%26rft.spage%253D251%26rft.epage%253D255%26rft.atitle%253DElectrofluorochromism%2Bat%2Bthe%2Bsingle-molecule%2Blevel%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aat1603%26rft_id%253Dinfo%253Apmid%252F30026221%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [34]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNjEvNjM5OS8yNTEiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzMvNjU1My8zOTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [35]: #xref-ref-7-1 "View reference 7 in text" [36]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D570%26rft.spage%253D210%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fs41586-019-1284-2%26rft_id%253Dinfo%253Apmid%252F31168096%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [37]: /lookup/external-ref?access_num=10.1038/s41586-019-1284-2&link_type=DOI [38]: /lookup/external-ref?access_num=31168096&link_type=MED&atom=%2Fsci%2F373%2F6553%2F392.atom [39]: #xref-ref-8-1 "View reference 8 in text" [40]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D568%26rft.spage%253D78%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fs41586-019-1059-9%26rft_id%253Dinfo%253Apmid%252F30944493%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [41]: /lookup/external-ref?access_num=10.1038/s41586-019-1059-9&link_type=DOI [42]: /lookup/external-ref?access_num=30944493&link_type=MED&atom=%2Fsci%2F373%2F6553%2F392.atom [43]: #xref-ref-9-1 "View reference 9 in text" [44]: {openurl}?query=rft.jtitle%253DJ.%2BChem.%2BPhys.%26rft.volume%253D153%26rft.spage%253D010902%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [45]: #xref-ref-10-1 "View reference 10 in text" [46]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D539%26rft.spage%253D263%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnature19816%26rft_id%253Dinfo%253Apmid%252F27830788%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [47]: /lookup/external-ref?access_num=10.1038/nature19816&link_type=DOI [48]: /lookup/external-ref?access_num=27830788&link_type=MED&atom=%2Fsci%2F373%2F6553%2F392.atom [49]: #xref-ref-11-1 "View reference 11 in text" [50]: {openurl}?query=rft.jtitle%253DScience%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aaz1098%26rft_id%253Dinfo%253Apmid%252F31727858%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [51]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNjcvNjQ3Ni80MTEiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzMvNjU1My8zOTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [52]: #xref-ref-12-1 "View reference 12 in text" [53]: {openurl}?query=rft.stitle%253DChem%2BSoc%2BRev%26rft.aulast%253DOgilby%26rft.auinit1%253DP.%2BR.%26rft.volume%253D39%26rft.issue%253D8%26rft.spage%253D3181%26rft.epage%253D3209%26rft.atitle%253DSinglet%2Boxygen%253A%2Bthere%2Bis%2Bindeed%2Bsomething%2Bnew%2Bunder%2Bthe%2Bsun.%26rft_id%253Dinfo%253Adoi%252F10.1039%252Fb926014p%26rft_id%253Dinfo%253Apmid%252F20571680%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [54]: /lookup/external-ref?access_num=10.1039/b926014p&link_type=DOI [55]: /lookup/external-ref?access_num=20571680&link_type=MED&atom=%2Fsci%2F373%2F6553%2F392.atom
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/334455
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Linfei Li,Nan Jiang. Proximity and single-molecule energetics[J]. Science,2021.
APA Linfei Li,&Nan Jiang.(2021).Proximity and single-molecule energetics.Science.
MLA Linfei Li,et al."Proximity and single-molecule energetics".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Linfei Li]的文章
[Nan Jiang]的文章
百度学术
百度学术中相似的文章
[Linfei Li]的文章
[Nan Jiang]的文章
必应学术
必应学术中相似的文章
[Linfei Li]的文章
[Nan Jiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。