GSTDTAP  > 气候变化
DOI10.1126/science.abd5803
Cage effects control the mechanism of methane hydroxylation in zeolites
Benjamin E. R. Snyder; Max L. Bols; Hannah M. Rhoda; Dieter Plessers; Robert A. Schoonheydt; Bert F. Sels; Edward I. Solomon
2021-07-16
发表期刊Science
出版年2021
英文摘要Zeolite catalysis could potentially offer a more direct route from methane to methanol. However, current catalysts tend to deactivate too quickly for practical use. Snyder et al. investigated the deactivation mechanism using Mössbauer and Raman spectroscopy and accompanying simulations (see the Perspective by Scott). Their results suggest that in zeolites with large apertures, after iron active sites strip hydrogen from methane, the resulting methyl radicals can leak away and deactivate other iron centers. Zeolites with tighter apertures can keep the radicals nearby longer, favoring the formation of methanol. Science , abd5803, this issue p. [327][1]; see also abj4734, p. [277][2] Catalytic conversion of methane to methanol remains an economically tantalizing but fundamentally challenging goal. Current technologies based on zeolites deactivate too rapidly for practical application. We found that similar active sites hosted in different zeolite lattices can exhibit markedly different reactivity with methane, depending on the size of the zeolite pore apertures. Whereas zeolite with large pore apertures deactivates completely after a single turnover, 40% of active sites in zeolite with small pore apertures are regenerated, enabling a catalytic cycle. Detailed spectroscopic characterization of reaction intermediates and density functional theory calculations show that hindered diffusion through small pore apertures disfavors premature release of CH3 radicals from the active site after C-H activation, thereby promoting radical recombination to form methanol rather than deactivated Fe-OCH3 centers elsewhere in the lattice. [1]: /lookup/doi/10.1126/science.abd5803 [2]: /lookup/doi/10.1126/science.abj4734
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/334389
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Benjamin E. R. Snyder,Max L. Bols,Hannah M. Rhoda,et al. Cage effects control the mechanism of methane hydroxylation in zeolites[J]. Science,2021.
APA Benjamin E. R. Snyder.,Max L. Bols.,Hannah M. Rhoda.,Dieter Plessers.,Robert A. Schoonheydt.,...&Edward I. Solomon.(2021).Cage effects control the mechanism of methane hydroxylation in zeolites.Science.
MLA Benjamin E. R. Snyder,et al."Cage effects control the mechanism of methane hydroxylation in zeolites".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Benjamin E. R. Snyder]的文章
[Max L. Bols]的文章
[Hannah M. Rhoda]的文章
百度学术
百度学术中相似的文章
[Benjamin E. R. Snyder]的文章
[Max L. Bols]的文章
[Hannah M. Rhoda]的文章
必应学术
必应学术中相似的文章
[Benjamin E. R. Snyder]的文章
[Max L. Bols]的文章
[Hannah M. Rhoda]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。