GSTDTAP  > 气候变化
DOI10.1126/science.abj0424
Autonomous biocompatible piezoelectrics
Shlomo Berger
2021-07-16
发表期刊Science
出版年2021
英文摘要Muscles provide mechanical forces needed for the dynamic activity of a human body. The mechanical forces applied on various human organs lead to different types of physical movements (e.g., contraction and extension, rotation, and bending). Injuries and diseases can disable muscle functionality, which may lead to the pronounced deterioration of a human activity or even cause death. Surgical correction is not always possible or does not always provide optimal results. Implanted artificial biocompatible devices can replace defective muscles. These should operate locally at the defective site by monitoring the need for a specific physical movement and then applying the correct mechanical force to obtain it. These devices should also be self-energized using the body's energy resources and programmed for optimal operation. On page 337 of this issue, Yang et al. ([ 1 ][1]) present a new approach for fabricating thin piezoelectric biocompatible thin films that actuate physical movements, demonstrated on mice muscles, under applied electric field. Biocompatible piezoelectric materials can provide sensing and actuating of physical movements of organs inside a human body ([ 2 ][2]). They possess a piezoelectric property ([ 3 ][3]) that interconverts electrical and mechanical energy. The piezoelectric response of materials results from a reversible change in the length of neighboring ionic bonds that create electric dipoles in response to applied mechanical forces or electric fields. Piezoelectric materials exist naturally in a human body ([ 4 ][4]), such as in bones and muscles ([ 5 ][5], [ 6 ][6]), and contribute to its normal activity. Proteins seem to drive the piezoelectric effect inside a human body. The basic building blocks of proteins are amino acids, which have electric dipoles derived from their polar side groups. For example, γ-glycine and dl-alanine are amino acid materials that have a strong piezoelectric response ([ 7 ][7]). The piezoelectric effect in amino acids is obtained by a change in the molecule electric dipole amplitude in response to either an applied mechanical force or an electric field. Artificially made biocompatible piezoelectric materials also exist, such as polyvinylidene fluoride (PVDF) and its copolymers ([ 8 ][8]). Yang et al. make an important contribution by developing a new method for scaling flexible piezoelectric glycine thin films. These films are self-assembled by evaporating a solvent from a glycine-polyvinyl alcohol solution. The films are also biocompatible and degradable. Biocompatible piezoelectric materials can be fabricated and designed for multiple purposes inside a human body. These include monitoring local dynamic pressure changes ([ 9 ][9]), such as heartbeats, breathing, blood flow, and intraocular and cranial pressure, and forming physical movements inside the human body, such as muscle activities ([ 10 ][10]). Another purpose is promoting the healing of injuries by induced local electric fields, such as in the case of local growth of neurons and accelerated repair of injured bones ([ 11 ][11]). Flexible polycrystalline piezoelectric thin films are more suitable than bulk size crystals for applications inside a human body because of the dynamic nature and flexibility of human organs. The thin films have a pronounced piezoelectric response when grown with a preferred polar crystallographic orientation in-vertical to the film plane. Using the piezoelectric effect to replace human muscle functionality by applying a mechanical force requires a source of electric energy. The optimal energy source would be the human body itself, which provides a mechanical energy that can be converted into an electrical energy by the piezoelectric materials. These devices are called piezoelectric energy harvesters, which can be attached as flexible thin films to local sites inside the human body. The piezoelectric harvesters can generate enough electric energy to operate the device even from tiny mechanical movements at extremely low frequencies ([ 12 ][12]), such as heartbeats, blood flow, contraction and expansion of lungs, walking, and eye blinking. The piezoelectric energy harvesters can be extremely flexible, lightweight, and positioned close to the piezoelectric actuator within the human body. The electric energy supplied by the piezoelectric harvester should be accumulated in a biocompatible electric capacitor that enables a controlled release of electric energy on demand to the piezoelectric actuator ([ 13 ][13]). Biocompatible capacitors can be made of piezoelectric thin films by using their dielectric properties. ![Figure][14] Biocompatible piezoelectrics Piezoelectric implants require a sensor to identify a problem in a muscle, apply corrections with actuation, monitor the change, and signal back to a microchip that controls this process. Ideally, the microchip is also implanted, and the energy for the processing is harvested from the local physical movements as well as vibrations. GRAPHIC: C. BICKEL/ SCIENCE Implanted microchips, developed for controlled drug release at local sites inside a human body ([ 14 ][15]), can, in principle, be used in a piezoelectric device. The implanted microchip controls the entire operation of the device, which includes the sensor, actuator, electric capacitor, and energy harvester (see the figure). The operations order of the microchip begins with a signal received from the piezoelectric sensor that indicates the misfunctioning of a certain muscle. Then, an electric pulse is sent through the electric capacitor to the piezoelectric actuator to apply a mechanical force to fix the problem. Finally, a feedback electric signal is received from the sensor that communicates the resulting effect. These operations should continue until the problem is fixed. In this way, the device operates autonomously where immediate intervention is needed without any external interference or external power supply. An external human body communication to the implanted microchip can be achieved by using a wireless communication ([ 15 ][16]). The purpose of such a communication is to receive real-time data on the implanted piezoelectric device activity and transmit operational commands to the microchip. A wireless communication to a human body from an external device requires a substantial power source. It suffers from poor transmission through biological tissues. It also needs a relatively large antenna, which limits the minimal size of the implantable microchip and prevents implementation in organs such as brain, heart, and spinal cord that could be damaged by the radiation energy. Extensive research activities are currently done on every aspect of biocompatible piezoelectric sensing, actuating, and energy harvesting. A major task would be to integrate them into an autonomous biocompatible device implanted on a local site inside a human body that optimally functions without any external intervention, replacing the functionality of a local muscle for the normal operation of a human organ. 1. [↵][17]1. F. Yang et al ., Science 373, 337 (2021). [OpenUrl][18][Abstract/FREE Full Text][19] 2. [↵][20]1. M. T. Chorsi et al ., Adv. Mater. 31, 1802084 (2018). [OpenUrl][21] 3. [↵][22]1. W. G. Cady , Piezoelectricity: Volume One: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals (Dover Publications, 2018). 4. [↵][23]1. E. Fukada , Ferroelectrics 60, 285 (1984). [OpenUrl][24] 5. [↵][25]1. E. Fukada, 2. H. Ueda , Jpn. J. Appl. Phys. 9, 844 (1970). [OpenUrl][26] 6. [↵][27]1. M. Minary-Jolandan, 2. M. F. Yu , ACS Nano 3, 1859 (2009). [OpenUrl][28][PubMed][29] 7. [↵][30]1. V. V. Lemanov, 2. S. N. Popov, 3. G. A. Pankova , Phys. Solid State 53, 1191 (2011). [OpenUrl][31] 8. [↵][32]1. J. Jacob, 2. N. More, 3. K. Kalia, 4. G. Kapusetti , Inflamm. Regen. 38, 2 (2018). [OpenUrl][33] 9. [↵][34]1. Y. Zhang, 2. F. Zhang, 3. D. Zhu , Mater. Horiz. 2, 133 (2015). [OpenUrl][35] 10. [↵][36]1. K. Kapat, 2. Q. T. H. Shubhra, 3. M. Zhou, 4. S. Leeuwenburgh , Adv. Funct. Mater. 30, 1909045 (2020). [OpenUrl][37] 11. [↵][38]1. A. H. Rajabi, 2. M. Jaffe, 3. T. L. Arinzeh , Acta Biomater. 24, 12 (2015). [OpenUrl][39] 12. [↵][40]1. M. T. Todaro et al ., IEEE Trans. NanoTechnol. 17, 220 (2018). [OpenUrl][41] 13. [↵][42]1. H. Li et al ., Adv. Sci. 6, 1801625 (2019). [OpenUrl][43] 14. [↵][44]1. A. E. M. Eltorai, 2. H. Fox, 3. E. McGurrin, 4. S. Guang , BioMed Res. Int. 2016, 1743472 (2016). [OpenUrl][45] 15. [↵][46]1. B. D. Nelson, 2. S. S. Karipott, 3. Y. Wang, 4. K. G. Ong , Sensors 20, 4604 (2020). [OpenUrl][47] [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: #ref-6 [7]: #ref-7 [8]: #ref-8 [9]: #ref-9 [10]: #ref-10 [11]: #ref-11 [12]: #ref-12 [13]: #ref-13 [14]: pending:yes [15]: #ref-14 [16]: #ref-15 [17]: #xref-ref-1-1 "View reference 1 in text" [18]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DYang%26rft.auinit1%253DF.%26rft.volume%253D373%26rft.issue%253D6552%26rft.spage%253D337%26rft.epage%253D342%26rft.atitle%253DWafer-scale%2Bheterostructured%2Bpiezoelectric%2Bbio-organic%2Bthin%2Bfilms%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.abf2155%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [19]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNzMvNjU1Mi8zMzciO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzMvNjU1Mi8yNzguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [20]: #xref-ref-2-1 "View reference 2 in text" [21]: {openurl}?query=rft.jtitle%253DAdv.%2BMater.%26rft.volume%253D31%26rft.spage%253D1802084%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [22]: #xref-ref-3-1 "View reference 3 in text" [23]: #xref-ref-4-1 "View reference 4 in text" [24]: {openurl}?query=rft.jtitle%253DFerroelectrics%26rft.volume%253D60%26rft.spage%253D285%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [25]: #xref-ref-5-1 "View reference 5 in text" [26]: {openurl}?query=rft.jtitle%253DJpn.%2BJ.%2BAppl.%2BPhys.%26rft.volume%253D9%26rft.spage%253D844%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [27]: #xref-ref-6-1 "View reference 6 in text" [28]: {openurl}?query=rft.stitle%253DACS%2BNano%26rft.aulast%253DMinary-Jolandan%26rft.auinit1%253DM.%26rft.volume%253D3%26rft.issue%253D7%26rft.spage%253D1859%26rft.epage%253D1863%26rft.atitle%253DUncovering%2Bnanoscale%2Belectromechanical%2Bheterogeneity%2Bin%2Bthe%2Bsubfibrillar%2Bstructure%2Bof%2Bcollagen%2Bfibrils%2Bresponsible%2Bfor%2Bthe%2Bpiezoelectricity%2Bof%2Bbone.%26rft_id%253Dinfo%253Apmid%252F19505115%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [29]: /lookup/external-ref?access_num=19505115&link_type=MED&atom=%2Fsci%2F373%2F6552%2F278.atom [30]: #xref-ref-7-1 "View reference 7 in text" [31]: {openurl}?query=rft.jtitle%253DPhys.%2BSolid%2BState%26rft.volume%253D53%26rft.spage%253D1191%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [32]: #xref-ref-8-1 "View reference 8 in text" [33]: {openurl}?query=rft.jtitle%253DInflamm.%2BRegen.%26rft.volume%253D38%26rft.spage%253D2%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [34]: #xref-ref-9-1 "View reference 9 in text" [35]: {openurl}?query=rft.jtitle%253DMater.%2BHoriz.%26rft.volume%253D2%26rft.spage%253D133%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [36]: #xref-ref-10-1 "View reference 10 in text" [37]: {openurl}?query=rft.jtitle%253DAdv.%2BFunct.%2BMater.%26rft.volume%253D30%26rft.spage%253D1909045%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [38]: #xref-ref-11-1 "View reference 11 in text" [39]: {openurl}?query=rft.jtitle%253DActa%2BBiomater.%26rft.volume%253D24%26rft.spage%253D12%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [40]: #xref-ref-12-1 "View reference 12 in text" [41]: {openurl}?query=rft.jtitle%253DIEEE%2BTrans.%2BNanoTechnol.%26rft.volume%253D17%26rft.spage%253D220%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [42]: #xref-ref-13-1 "View reference 13 in text" [43]: {openurl}?query=rft.jtitle%253DAdv.%2BSci.%26rft.volume%253D6%26rft.spage%253D1801625%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [44]: #xref-ref-14-1 "View reference 14 in text" [45]: {openurl}?query=rft.jtitle%253DBioMed%2BRes.%2BInt.%26rft.volume%253D2016%26rft.spage%253D1743472%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [46]: #xref-ref-15-1 "View reference 15 in text" [47]: {openurl}?query=rft.jtitle%253DSensors%26rft.volume%253D20%26rft.spage%253D4604%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx
领域气候变化 ; 资源环境
URL查看原文
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/334352
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Shlomo Berger. Autonomous biocompatible piezoelectrics[J]. Science,2021.
APA Shlomo Berger.(2021).Autonomous biocompatible piezoelectrics.Science.
MLA Shlomo Berger."Autonomous biocompatible piezoelectrics".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shlomo Berger]的文章
百度学术
百度学术中相似的文章
[Shlomo Berger]的文章
必应学术
必应学术中相似的文章
[Shlomo Berger]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。