GSTDTAP  > 气候变化
DOI10.1126/science.abj6746
A shift in taste
F. Keith Barker
2021-07-09
发表期刊Science
出版年2021
英文摘要Sensory systems evolve to enable organisms to detect cues pertinent to survival. The diversification of these systems is a critical aspect of the adaptative radiation of animals—that is, how an ancestral species rapidly diversifies into a large number of morphologically diverse descendant species. Birds are the most diverse clade of terrestrial vertebrates, at more than 10,000 currently recognized species. Curiously, the entire avian clade was shaped by the early loss of a gene encoding a sweet receptor. How then, did thousands of bird species that rely on nectar and fruit evolve to perceive sugars? On page 226 of this issue, Toda et al. ([ 1 ][1]) report a shift from savory to sweet perception in the early evolution of songbirds. The change may have played a critical role in the radiation of this diverse group. Painstaking anatomical and physiological studies have yielded important information about sensory systems whose functions depend on cellular- or organ-level adaption, such as echolocation in cetaceans and bats and specialized arthropod visual systems. By contrast, genomic studies of animals have rapidly yielded important insights into the evolution of sensory traits in which function is defined at the molecular level, including hearing ([ 2 ][2]), vision ([ 3 ][3]), olfaction ([ 4 ][4]), and gustation ([ 5 ][5]). For instance, studies on the evolution of opsins—light-sensitive proteins found in photoreceptor cells—demonstrate how gene duplication and loss can either expand or restrict the visual range of animals, affecting their ability to identify resources or to differentiate food resource quality ([ 6 ][6]). Such sensory changes can have profound effects beyond food acquisition, also driving coincident shifts in signaling modality and information content ([ 7 ][7]). Birds have provided classic examples of adaptive radiation, such as the morphologically diverse Darwin's finches and Hawaiian honeycreepers. Broad comparative studies of avian diversification have also identified other rapidly speciating lineages, where the imprint of adaptive radiation was not so clear cut. One such lineage is the nectarivorous hummingbirds ([ 8 ][8], [ 9 ][9]). Recent molecular work has shown that the insectivorous ancestor of this lineage retooled its umami receptor (sensitive to amino acids) for the detection of sugars ([ 5 ][5]). This molecular shift—which could be described as a key innovation—allowed hummingbirds to exploit nectar, a resource that most early birds, not only the ancestor of hummingbirds, most likely could not taste. This ancestral absence of sweet perception can be inferred because in most nonavian lineages, the sweet receptor is formed by a heterodimer of two taste receptors, T1R2 and T1R3, the former of which is missing in birds whose genomes have been sequenced (now spanning the entire avian tree) ([ 10 ][10]). The umami receptor is formed by pairing T1R3 with another molecular partner, T1R1, which is still present in bird genomes. Toda et al. suggest that the evolution of the umami receptor may have played a critical permissive role in some of the classic examples of avian adaptive radiation (e.g., the Darwin's finches and honeycreepers) as well. Toda et al. analyzed taste receptor function and evolution in passerine birds. Passerines are members of the largest of 40 orders of birds, which comprises more than half of all bird species. The authors reviewed the frequency of nectar consumption (the most common source of dietary sugars) across birds, identifying multiple nonpasserine (hummingbirds, parrots, and others) and many passerine lineages that extensively consume sugars. Members of the oscine passerines—commonly known as songbirds—including well-known nectarivore radiations, such as the honeyeaters, sunbirds, and Hawaiian honeycreepers, as well as less-specialized groups, such as wattlebirds, white-eyes, and tanagers, frequently imbibe nectar and similar sugar sources, such as honeydew. Choice tests in a nectar specialist (a honeyeater) and a nonspecialist (the canary) demonstrate that oscine passerines both consume and taste sugars. A comparative evolutionary analysis of the pattern of nectarivory across birds reported by Toda et al. suggests that perception of sweetness may be hard to acquire—with possibly a single origin within oscines—but, once present, this trait permits rapid gains and losses of sugar exploitation. To interrogate the molecular basis of sweet perception, Toda et al. cloned the T1R genes from species spanning most of the passerine evolutionary tree. This allowed them to express these native genes (as well as heterospecific combinations and mutants) in cell cultures and detect ligand binding using a cell-based luminescence assay. All tested oscine umami receptors (T1R1-T1R3 dimers) responded strongly to sugars, especially sucrose. By contrast, umami receptors from the two nonoscine passerines retained the ancestral umami sensitivity with no sign of activation by sugar. Expression studies combining honeyeater T1R receptor subunits with the subunits of other oscine species demonstrate conserved sweet perception—and thus presumably a shared molecular mechanism—across most oscines. By contrast, coexpression of these genes with their partners cloned from hummingbirds showed no binding activity for sugars, though they still responded to amino acids, which suggests a different binding mechanism between these deeply divergent lineages. The shared oscine binding mechanism was further explored by synthesizing inferred ancestral genes for T1R1 and T1R3 and expressing these and chimeras of the two to test for sugar sensitivity. These experiments suggest that the origin of shared sweet perception is nested somewhat within the oscine lineage (excluding two major branches of oscines) and that it involves evolution of residues in both T1R1 and T1R3 subunits, whereas previous work on hummingbirds identified most changes in T1R3. Functional convergence in these lineages is therefore likely based on complex changes in tertiary structure evolving from different starting points, rather than parallel residue-for-residue replacements, which might explain the relatively few origins of this trait. The diversity of passerines has long intrigued biologists ([ 11 ][11]), and some oscine lineages containing nectarivores have unusually high species diversity given their age ([ 8 ][8], [ 12 ][12], [ 13 ][13]). Biogeographic analyses of oscines indicate that they originated in Australasia ([ 13 ][13], [ 14 ][14], [ 15 ][15]), and thus sweet perception probably evolved there in the Oligocene (34 to 23 million years ago) or possibly earlier. The early evolution of sweet perception likely played an important role in diversification of this lineage, which is now a numerically and ecologically dominant component of terrestrial avifaunas the world over. 1. [↵][16]1. Y. Toda et al ., Science 373, 226 (2021). [OpenUrl][17][Abstract/FREE Full Text][18] 2. [↵][19]1. Z. Liu, 2. F.-Y. Qi, 3. D.-M. Xu, 4. X. Zhou, 5. P. Shi , Sci. Adv. 4, eaat8821 (2018). [OpenUrl][20][FREE Full Text][21] 3. [↵][22]1. R. Borges et al ., BMC Genomics 16, 751 (2015). [OpenUrl][23][CrossRef][24] 4. [↵][25]1. L. R. Yohe et al ., Evolution 71, 923 (2017). [OpenUrl][26] 5. [↵][27]1. M. W. Baldwin et al ., Science 345, 929 (2014). [OpenUrl][28][Abstract/FREE Full Text][29] 6. [↵][30]1. L. S. Carvalho, 2. D. M. A. Pessoa, 3. J. K. Mountford, 4. W. I. L. Davies, 5. D. M. Hunt , Front. Ecol. Evol. 5, 34 (2017). [OpenUrl][31] 7. [↵][32]1. A. A. Fernandez, 2. M. R. Morris , Am. Nat. 170, 10 (2007). [OpenUrl][33][CrossRef][34][PubMed][35][Web of Science][36] 8. [↵][37]1. W. Jetz, 2. G. H. Thomas, 3. J. B. Joy, 4. K. Hartmann, 5. A. O. Mooers , Nature 491, 444 (2012). [OpenUrl][38][CrossRef][39][PubMed][40][Web of Science][41] 9. [↵][42]1. J. A. McGuire et al ., Curr. Biol. 24, 910 (2014). [OpenUrl][43][CrossRef][44][PubMed][45] 10. [↵][46]1. S. Feng et al ., Nature 587, 252 (2020). [OpenUrl][47][CrossRef][48] 11. [↵][49]1. R. J. Raikow , Syst. Zool. 35, 255 (1986). [OpenUrl][50][CrossRef][51] 12. [↵][52]1. R. G. Moyle, 2. C. E. Filardi, 3. C. E. Smith, 4. J. Diamond , Proc. Natl. Acad. Sci. U.S.A. 106, 1863 (2009). [OpenUrl][53][Abstract/FREE Full Text][54] 13. [↵][55]1. C. H. Oliveros et al ., Proc. Natl. Acad. Sci. U.S.A. 116, 7916 (2019). [OpenUrl][56][Abstract/FREE Full Text][57] 14. [↵][58]1. R. G. Moyle et al ., Nat. Commun. 7, 12709 (2016). [OpenUrl][59][CrossRef][60][PubMed][61] 15. [↵][62]1. F. K. Barker, 2. A. Cibois, 3. P. Schikler, 4. J. Feinstein, 5. J. Cracraft , Proc. Natl. Acad. Sci. U.S.A. 101, 11040 (2004). [OpenUrl][63][Abstract/FREE Full Text][64] [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: #ref-6 [7]: #ref-7 [8]: #ref-8 [9]: #ref-9 [10]: #ref-10 [11]: #ref-11 [12]: #ref-12 [13]: #ref-13 [14]: #ref-14 [15]: #ref-15 [16]: #xref-ref-1-1 "View reference 1 in text" [17]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DToda%26rft.auinit1%253DY.%26rft.volume%253D373%26rft.issue%253D6551%26rft.spage%253D226%26rft.epage%253D231%26rft.atitle%253DEarly%2Borigin%2Bof%2Bsweet%2Bperception%2Bin%2Bthe%2Bsongbird%2Bradiation%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.abf6505%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [18]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNzMvNjU1MS8yMjYiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzMvNjU1MS8xNTQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [19]: #xref-ref-2-1 "View reference 2 in text" [20]: {openurl}?query=rft.jtitle%253DScience%2BAdvances%26rft.stitle%253DSci%2BAdv%26rft.aulast%253DLiu%26rft.auinit1%253DZ.%26rft.volume%253D4%26rft.issue%253D10%26rft.spage%253Deaat8821%26rft.epage%253Deaat8821%26rft.atitle%253DGenomic%2Band%2Bfunctional%2Bevidence%2Breveals%2Bmolecular%2Binsights%2Binto%2Bthe%2Borigin%2Bof%2Becholocation%2Bin%2Bwhales%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fsciadv.aat8821%26rft_id%253Dinfo%253Apmid%252F30306134%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [21]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6MzoiUERGIjtzOjExOiJqb3VybmFsQ29kZSI7czo4OiJhZHZhbmNlcyI7czo1OiJyZXNpZCI7czoxMzoiNC8xMC9lYWF0ODgyMSI7czo0OiJhdG9tIjtzOjIyOiIvc2NpLzM3My82NTUxLzE1NC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30= [22]: #xref-ref-3-1 "View reference 3 in text" [23]: {openurl}?query=rft.jtitle%253DBMC%2BGenomics%26rft.volume%253D16%26rft.spage%253D751%26rft_id%253Dinfo%253Adoi%252F10.1186%252Fs12864-%2B015-1924-3%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [24]: /lookup/external-ref?access_num=10.1186/s12864- 015-1924-3&link_type=DOI [25]: #xref-ref-4-1 "View reference 4 in text" [26]: {openurl}?query=rft.jtitle%253DEvolution%26rft.volume%253D71%26rft.spage%253D923%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [27]: #xref-ref-5-1 "View reference 5 in text" [28]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DBaldwin%26rft.auinit1%253DM.%2BW.%26rft.volume%253D345%26rft.issue%253D6199%26rft.spage%253D929%26rft.epage%253D933%26rft.atitle%253DEvolution%2Bof%2Bsweet%2Btaste%2Bperception%2Bin%2Bhummingbirds%2Bby%2Btransformation%2Bof%2Bthe%2Bancestral%2Bumami%2Breceptor%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.1255097%26rft_id%253Dinfo%253Apmid%252F25146290%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [29]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNDUvNjE5OS85MjkiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzMvNjU1MS8xNTQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [30]: #xref-ref-6-1 "View reference 6 in text" [31]: {openurl}?query=rft.jtitle%253DFront.%2BEcol.%2BEvol.%26rft.volume%253D5%26rft.spage%253D34%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [32]: #xref-ref-7-1 "View reference 7 in text" [33]: {openurl}?query=rft.stitle%253DAm%2BNat%26rft.aulast%253DFernandez%26rft.auinit1%253DA.%2BA.%26rft.volume%253D170%26rft.issue%253D1%26rft.spage%253D10%26rft.epage%253D20%26rft.atitle%253DSexual%2Bselection%2Band%2Btrichromatic%2Bcolor%2Bvision%2Bin%2Bprimates%253A%2Bstatistical%2Bsupport%2Bfor%2Bthe%2Bpreexisting-bias%2Bhypothesis.%26rft_id%253Dinfo%253Adoi%252F10.1086%252F518566%26rft_id%253Dinfo%253Apmid%252F17853988%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [34]: /lookup/external-ref?access_num=10.1086/518566&link_type=DOI [35]: /lookup/external-ref?access_num=17853988&link_type=MED&atom=%2Fsci%2F373%2F6551%2F154.atom [36]: /lookup/external-ref?access_num=000247527200004&link_type=ISI [37]: #xref-ref-8-1 "View reference 8 in text" [38]: {openurl}?query=rft.jtitle%253DNature%26rft.stitle%253DNature%26rft.aulast%253DJetz%26rft.auinit1%253DW.%26rft.volume%253D491%26rft.issue%253D7424%26rft.spage%253D444%26rft.epage%253D448%26rft.atitle%253DThe%2Bglobal%2Bdiversity%2Bof%2Bbirds%2Bin%2Bspace%2Band%2Btime.%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnature11631%26rft_id%253Dinfo%253Apmid%252F23123857%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [39]: /lookup/external-ref?access_num=10.1038/nature11631&link_type=DOI [40]: /lookup/external-ref?access_num=23123857&link_type=MED&atom=%2Fsci%2F373%2F6551%2F154.atom [41]: /lookup/external-ref?access_num=000311031600046&link_type=ISI [42]: #xref-ref-9-1 "View reference 9 in text" [43]: {openurl}?query=rft.jtitle%253DCurr.%2BBiol.%26rft.volume%253D24%26rft.spage%253D910%26rft_id%253Dinfo%253Adoi%252F10.1016%252Fj.cub.2014.03.016%26rft_id%253Dinfo%253Apmid%252F24704078%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [44]: /lookup/external-ref?access_num=10.1016/j.cub.2014.03.016&link_type=DOI [45]: /lookup/external-ref?access_num=24704078&link_type=MED&atom=%2Fsci%2F373%2F6551%2F154.atom [46]: #xref-ref-10-1 "View reference 10 in text" [47]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D587%26rft.spage%253D252%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fs41586-020-2873-9%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [48]: /lookup/external-ref?access_num=10.1038/s41586-020-2873-9&link_type=DOI [49]: #xref-ref-11-1 "View reference 11 in text" [50]: {openurl}?query=rft.jtitle%253DSyst.%2BZool.%26rft_id%253Dinfo%253Adoi%252F10.1093%252Fsysbio%252F35.2.255%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [51]: /lookup/external-ref?access_num=10.1093/sysbio/35.2.255&link_type=DOI [52]: #xref-ref-12-1 "View reference 12 in text" [53]: {openurl}?query=rft.jtitle%253DProc.%2BNatl.%2BAcad.%2BSci.%2BU.S.A.%26rft_id%253Dinfo%253Adoi%252F10.1073%252Fpnas.0809861105%26rft_id%253Dinfo%253Apmid%252F19181851%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [54]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMDoiMTA2LzYvMTg2MyI7czo0OiJhdG9tIjtzOjIyOiIvc2NpLzM3My82NTUxLzE1NC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30= [55]: #xref-ref-13-1 "View reference 13 in text" [56]: {openurl}?query=rft.jtitle%253DProc.%2BNatl.%2BAcad.%2BSci.%2BU.S.A.%26rft_id%253Dinfo%253Adoi%252F10.1073%252Fpnas.1813206116%26rft_id%253Dinfo%253Apmid%252F30936315%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [57]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiMTE2LzE2Lzc5MTYiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzMvNjU1MS8xNTQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [58]: #xref-ref-14-1 "View reference 14 in text" [59]: {openurl}?query=rft.jtitle%253DNat.%2BCommun.%26rft.volume%253D7%26rft.spage%253D12709%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fncomms12709%26rft_id%253Dinfo%253Apmid%252F27575437%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [60]: /lookup/external-ref?access_num=10.1038/ncomms12709&link_type=DOI [61]: /lookup/external-ref?access_num=27575437&link_type=MED&atom=%2Fsci%2F373%2F6551%2F154.atom [62]: #xref-ref-15-1 "View reference 15 in text" [63]: {openurl}?query=rft.jtitle%253DProc.%2BNatl.%2BAcad.%2BSci.%2BU.S.A.%26rft_id%253Dinfo%253Adoi%252F10.1073%252Fpnas.0401892101%26rft_id%253Dinfo%253Apmid%252F15263073%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [64]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMjoiMTAxLzMwLzExMDQwIjtzOjQ6ImF0b20iO3M6MjI6Ii9zY2kvMzczLzY1NTEvMTU0LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/334225
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
F. Keith Barker. A shift in taste[J]. Science,2021.
APA F. Keith Barker.(2021).A shift in taste.Science.
MLA F. Keith Barker."A shift in taste".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[F. Keith Barker]的文章
百度学术
百度学术中相似的文章
[F. Keith Barker]的文章
必应学术
必应学术中相似的文章
[F. Keith Barker]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。