Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1073/pnas.2107238118 |
Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean | |
Loay J. Jabre; Andrew E. Allen; J. Scott P. McCain; John P. McCrow; Nancy Tenenbaum; Jenna L. Spackeen; Rachel E. Sipler; Beverley R. Green; Deborah A. Bronk; David A. Hutchins; Erin M. Bertrand | |
2021-07-27 | |
发表期刊 | Proceedings of the National Academy of Sciences
![]() |
出版年 | 2021 |
英文摘要 | The Southern Ocean (SO) harbors some of the most intense phytoplankton blooms on Earth. Changes in temperature and iron availability are expected to alter the intensity of SO phytoplankton blooms, but little is known about how these changes will influence community composition and downstream biogeochemical processes. We performed light-saturated experimental manipulations on surface ocean microbial communities from McMurdo Sound in the Ross Sea to examine the effects of increased iron availability (+2 nM) and warming (+3 and +6 °C) on nutrient uptake, as well as the growth and transcriptional responses of two dominant diatoms, Fragilariopsis and Pseudo-nitzschia. We found that community nutrient uptake and primary productivity were elevated under both warming conditions without iron addition (relative to ambient −0.5 °C). This effect was greater than additive under concurrent iron addition and warming. Pseudo-nitzschia became more abundant under warming without added iron (especially at 6 °C), while Fragilariopsis only became more abundant under warming in the iron-added treatments. We attribute the apparent advantage Pseudo-nitzschia shows under warming to up-regulation of iron-conserving photosynthetic processes, utilization of iron-economic nitrogen assimilation mechanisms, and increased iron uptake and storage. These data identify important molecular and physiological differences between dominant diatom groups and add to the growing body of evidence for Pseudo-nitzschia’s increasingly important role in warming SO ecosystems. This study also suggests that temperature-driven shifts in SO phytoplankton assemblages may increase utilization of the vast pool of excess nutrients in iron-limited SO surface waters and thereby influence global nutrient distribution and carbon cycling. |
领域 | 资源环境 |
URL | 查看原文 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/333984 |
专题 | 资源环境科学 |
推荐引用方式 GB/T 7714 | Loay J. Jabre,Andrew E. Allen,J. Scott P. McCain,et al. Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean[J]. Proceedings of the National Academy of Sciences,2021. |
APA | Loay J. Jabre.,Andrew E. Allen.,J. Scott P. McCain.,John P. McCrow.,Nancy Tenenbaum.,...&Erin M. Bertrand.(2021).Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean.Proceedings of the National Academy of Sciences. |
MLA | Loay J. Jabre,et al."Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean".Proceedings of the National Academy of Sciences (2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论