GSTDTAP  > 资源环境科学
Throwing an ‘axion bomb’ into a black hole challenges fundamental law of physics
admin
2021-06-25
发布年2021
语种英语
国家英国
领域资源环境
正文(英文)
Illustration of a black hole

New research shows how the fundamental law of conservation of charge could break down near a black hole.

Singularities, such as those at the centre of black holes, where density becomes infinite, are often said to be places where physics ‘breaks down’. However, this doesn’t mean that ‘anything’ could happen, and physicists are interested in which laws could break down, and how.

We take aim at one of the most cherished laws of physics: the conservation of charge. Professor Martin McCall

Now, a research team from Imperial College London, the Cockcroft Institute and Lancaster University have proposed a way that singularities could violate the law of conservation of charge. Their theory is published in Annalen der Physik.

Co-author Professor Martin McCall, from the Department of Physics at Imperial, said: “’Physics breaks down at a singularity' is one of the most famous statements in pop-physics. But by showing how this might actually happen, we take aim at one of the most cherished laws of physics: the conservation of charge.”

Destroying charge

The conservation of charge says that the total electric charge of any isolated system – including the Universe as a whole – never changes. This means that if negatively or positively charged particles move into one area, the same amount of respectively charged particles must move out.

This has been shown at the very smallest scales: when different particles are created or eliminated in experiments such as the Large Hadron Collider, the same amount of negatively and positively charged particles are always produced or destroyed, respectively.

Now, by modifying classic physics equations to include axions, a candidate for dark matter, the team have been able to show that temporary singularities – such as black holes that appear and then later evaporate – could destroy charge when they come to the end of their life.

Ring of red layers surrounded by perpendicular rings of blue layers
Coupled axion and electromagnetic field

Axions are hypothetical particles that may explain dark matter – the ‘missing’ 85 percent of the matter of the Universe. Their predicted properties could form a field that would interact with the kind of fields physicists have known about for centuries – electromagnetic fields, which are described by a set of equations called Maxwell’s equations.

Using a branch of mathematics called differential geometry, the team found out how to create or destroy charge, violating the charge conservation of the Universe.

Philosophical implications

Co-author Dr Jonathan Gratus, from the Department of Physics at Lancaster University, said: "You can imagine creating an ‘axion bomb' that holds charge by combining coupled axion and electromagnetic fields; and then dropping it into an evaporating black hole. As the construction shrinks and disappears into the singularity, it takes electrical charge with it.   It is the combination of a temporary singularity and a newly proposed type of axion field that is crucial to its success."

Co-author Dr Paul Kinsler, from the Department of Physics at Imperial, said: “There are also philosophical implications. Although people often like to say that physics ‘breaks down’, here we show that although exotic phenomena might occur, what actually happens is nevertheless constrained by the still-working laws of physics around the singularity.”

The team say the axion phenomenon would only occur under extreme conditions that currently cannot be created in a lab, but that future advances in intense laser fields might allow the theory to be tested in a terrestrial environment.

-

Temporary Singularities and Axions: An Analytic Solution that Challenges Charge Conservation’ by Jonathan Gratus, Paul Kinsler and Martin W. McCall is published in Annalen der Physik.

Top image: This artist's conception illustrates one of the most primitive supermassive black holes known (central black dot) at the core of a young, star-rich galaxy. Credit: NASA/JPL-Caltech

URL查看原文
来源平台Imperial College London
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/333569
专题资源环境科学
推荐引用方式
GB/T 7714
admin. Throwing an ‘axion bomb’ into a black hole challenges fundamental law of physics. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。