GSTDTAP  > 气候变化
New analysis reveals global distribution of toxic pollution and climate change
admin
2021-07-21
发布年2021
语种英语
国家美国
领域气候变化 ; 地球科学 ; 资源环境
正文(英文)
IMAGE

IMAGE: The global distribution of the combined toxic-climate risk. The global distribution of the combined risk of toxic pollution (low or high ecosystem health) and climate impacts (high or low vulnerability) risk... view more 

Credit: Marcantonio et al, 2021, PLOS ONE (CC-BY 4.0, https://creativecommons.org/licenses/by/4.0/)

A new analysis of global datasets shows low-income countries are significantly more likely to be impacted by both toxic pollution and climate change--and provides a list of at-risk countries most (and least) able to immediately begin direct efforts toward pollution risk reduction, according to a study published July 7, 2021 in the open-access journal PLOS ONE by Richard Marcantonio from the University of Notre Dame, Indiana, USA, and colleagues.

In this age of the Anthropocene, it's clear that human activities are destabilizing our planet across multiple systems. Previous research has shown that low-income countries face higher risks than high-income countries from toxic pollution and climate change; however, few studies have explored the relationship between these two risks.

To test the relationship between toxic pollution and climate change, the authors collated and analyzed three frequently used public datasets, ND-GAIN (Notre Dame Global Adaptation Index), EPI (Yale Environmental Performance Index), and GAHP (Global Alliance on Health and Pollution), using data for 176 countries from 2018.

They found a strong (rs = -0.798; 95% CI -0.852, -0.727) and statistically significant (p<0.0001) relationship between the spatial distribution of global climate risk and toxic pollution--in other words, countries most at risk for impacts of climate change were most often also the countries facing highest risks of toxic pollution. (And as other studies show, climate change and toxic pollution interact to create compounding issues: e.g. warming temperatures increase rates of heat-related illness/death as well as enhance the toxicity of environmental contaminants.) The top one-third of countries most at-risk represented over two-thirds of the world's population, geographically concentrated in low-income countries across Africa and Southeast Asia. The authors note that the demographic, ecological, and social factors at work are interconnected and demonstrate broader patterns of inequality, and also emphasize that physical geography, local structural conditions (such as a relatively low capacity for environmental policy and enforcement), and external factors (such as foreign firms taking advantage of reduced environmental regulation) all play a role in exacerbating risks in these countries. Based on their analysis, the authors went on to create a "Target" list of top-ten countries that could provide maximum returns on any investment for risk reduction based on their risk as well as their structural capacity to enact changes (respectively: Singapore, Rwanda, China, India, Solomon Islands, Bhutan, Botswana, Georgia, the Republic of Korea, and Thailand).

The data used in this study do not capture all forms of harm or potential risk from toxic pollution and climate change--only those measured in the initial datasets. Additionally, the authors note that addressing impacts may require a finer intra-country assessment, since risks can vary widely within countries. However, the immediate findings clearly point to a need to jointly address the effects of pollution and climate change globally, while also suggesting an approach for policymakers worldwide.

The authors add: "Vast work has been done to understand the magnitude and distribution of risk from climate change and toxic pollution, separately. We wanted to know if the spatial distribution of these two types of environmental risks are similar and, unfortunately, our results say that in general they are."

###

Citation: Marcantonio R, Javeline D, Field S, Fuentes A (2021) Global distribution and coincidence of pollution, climate impacts, and health risk in the Anthropocene. PLoS ONE 16(7): e0254060. https://doi.org/10.1371/journal.pone.0254060

Funding: The authors received no specific funding for this work.

Competing Interests: The authors have declared that no competing interests exist.

In your coverage please use this URL to provide access to the freely available article in PLOS ONE: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254060

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/332591
专题气候变化
地球科学
资源环境科学
推荐引用方式
GB/T 7714
admin. New analysis reveals global distribution of toxic pollution and climate change. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。