GSTDTAP  > 地球科学
Stopping the sulfur shuttle for better batteries
admin
2021-06-29
发布年2021
语种英语
国家美国
领域地球科学 ; 气候变化
正文(英文)

As our society and transportation systems become increasingly electrified, scientists worldwide are seeking more efficient and higher capacity storage systems. Researchers at KAUST have made an important contribution by modifying lithium-sulfur (Li-S) batteries to suppress a problem known as polysulfide shuttling.

"The bottleneck in the utilization of renewable energy, especially in transportation, is the need for high-density batteries," says Eman Alhajji, Ph.D. student and first author of the research paper.

Li-S batteries have several potential advantages over the most commonly used types of batteries. They have a higher theoretical energy storage capacity and sulfur is a nontoxic element readily available in nature. Sulfur is also a waste product of the petrochemical industry, so it could be obtained relatively cheaply while increasing the sustainability of another industry.

Polysulfide shuttling involves the movement of sulfur-containing intermediates between the cathode and anode during the battery's chemical processes. This seriously degrades the capacity and recharging ability of the Li-S battery technologies that have been explored to date.

The KAUST team's solution is based on a layer of graphene. They make this by subjecting a polyimide polymer to laser energy in a process called laser scribing, creating a suitably structured porous material. A key feature is that the material is hierarchically porous in three dimensions, meaning it has an array of pores of different sizes. Nano-sized carbon particles are then added and taken up by the pores to form the final product.

Alhajji and her colleagues found that placing a thin layer of this material between the cathode and anode of an Li-S battery significantly suppresses the polysulfide shuttling.

"Making this freestanding interlayer just a few micrometers thick was a challenge," says Alhajji, adding, "It was fun to roll it like playdough, but then I had to handle it in a very gentle manner, especially during battery assembly."

Until now, most options proposed to solve the polysulfide shuttling problem have suffered from limitations that make them unsuitable for large-scale commercial application. In contrast, the laser-scribed graphene developed at KAUST is produced by a method that the researchers describe as "scalable and straightforward."

Alhajji won a 2021 Materials Research Society Best Poster Award based on her idea for suppressing the shuttling. "This is a really challenging competition," says Alhajji's supervisor Husam Alshareef, adding, "Only a handful of students from the Materials Science & Engineering program at KAUST have won this award."

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/331247
专题地球科学
气候变化
推荐引用方式
GB/T 7714
admin. Stopping the sulfur shuttle for better batteries. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。