GSTDTAP  > 气候变化
Pretreating nuisance green algae with lye, urea increases bacterial production of biogas
admin
2021-06-29
发布年2021
语种英语
国家美国
领域气候变化
正文(英文)
IMAGE

IMAGE: In the control image (left), the substrate is smooth and intact, but in the image following NaOH-urea pretreatment (right), the substrate is broken down. view more 

Credit: Harbin Engineering University

WASHINGTON, June 29, 2021 - For more than 60 years, algae have been studied as a potential feedstock for biofuel production, but the cellulose in their cell wall makes it hard to access the critical molecules inside and convert them to biogas.

In the Journal of Renewable and Sustainable Energy, from AIP Publishing, an international research team reports their success in using urea and sodium hydroxide (NaOH, commonly known as lye or caustic soda) as a pretreatment of algae, which breaks down cellulose and more than doubles biogas production under their initial experimental conditions.

"We were inspired by previously published results showing the promise of NaOH and urea in altering the solubility of cellulose," said co-author Yue Shi. "We wanted to explore whether this could help us overcome one of the big challenges of digesting algae."

To produce biogas from algae, researchers commonly use a naturally occurring process called anerobic digestion, in which a type of bacteria break down the algae and produce a methane-rich gas mixture that can be purified. The resulting methane can be used in the production of heat, electricity, methanol, car fuel, and other clean energy sources.

This study presents the first steps toward optimizing conditions for such energy production, testing variations in time, temperature, and concentration of lye-urea pretreatment. Specifically, the most effective combination in this study was a 50-minute pretreatment at -16?C with a lye-urea concentration of 5.89%.

"The interactions between variables were also evident in our results," said Shi. "The microstructural changes that resulted from pretreatment were obvious upon imaging using scanning electron microscopy."

Amidst growing concerns about the limited availability of fossil fuels and their potentially detrimental effects on our environment, global interest in affordable and renewable energy is growing. Moreover, identifying environmentally detrimental materials as the raw materials for these processes could be dual purpose.

The circular economy model, for example, proposes recovery of waste resources and environmentally detrimental products at their source can be used as feedstocks for materials capable of replacing existing resources.

In the study, the feedstock was Enteromorpha, a macroalgae or seaweed responsible for green tide, an algal overgrowth that is damaging to tourism, aquaculture, and natural ecosystems. The global economic and ecological impacts of green tide have been increasing in scale and frequency since the 1960s.

Capturing this seasonal and emergent algae and converting it into a cost-effective and sustainable biofuel would have social and economic benefits beyond clean energy and bring us closer to a circular economy.

###

The article, "NaOH-Urea pretreatment for biogas enhancement from algal biomass anaerobic digestion," is authored by Yue Shi, RuiZhe Feng, Asad A. Zaidi, QiaoYan Li, and Kun Zhang. The article will appear in Journal of Renewable and Sustainable Energy on June 29, 2021 (DOI: 10.1063/5.0048341). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0048341.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/331145
专题气候变化
推荐引用方式
GB/T 7714
admin. Pretreating nuisance green algae with lye, urea increases bacterial production of biogas. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。