GSTDTAP  > 气候变化
DOI10.1126/science.abh2634
Approaching the motional ground state of a 10-kg object
Chris Whittle; Evan D. Hall; Sheila Dwyer; Nergis Mavalvala; Vivishek Sudhir; R. Abbott; A. Ananyeva; C. Austin; L. Barsotti; J. Betzwieser; C. D. Blair; A. F. Brooks; D. D. Brown; A. Buikema; C. Cahillane; J. C. Driggers; A. Effler; A. Fernandez-Galiana; P. Fritschel; V. V. Frolov; T. Hardwick; M. Kasprzack; K. Kawabe; N. Kijbunchoo; J. S. Kissel; G. L. Mansell; F. Matichard; L. McCuller; T. McRae; A. Mullavey; A. Pele; R. M. S. Schofield; D. Sigg; M. Tse; G. Vajente; D. C. Vander-Hyde; Hang Yu; Haocun Yu; C. Adams; R. X. Adhikari; S. Appert; K. Arai; J. S. Areeda; Y. Asali; S. M. Aston; A. M. Baer; M. Ball; S. W. Ballmer; S. Banagiri; D. Barker; J. Bartlett; B. K. Berger; D. Bhattacharjee; G. Billingsley; S. Biscans; R. M. Blair; N. Bode; P. Booker; R. Bork; A. Bramley; K. C. Cannon; X. Chen; A. A. Ciobanu; F. Clara; C. M. Compton; S. J. Cooper; K. R. Corley; S. T. Countryman; P. B. Covas; D. C. Coyne; L. E. H. Datrier; D. Davis; C. Di Fronzo; K. L. Dooley; P. Dupej; T. Etzel; M. Evans; T. M. Evans; J. Feicht; P. Fulda; M. Fyffe; J. A. Giaime; K. D. Giardina; P. Godwin; E. Goetz; S. Gras; C. Gray; R. Gray; A. C. Green; E. K. Gustafson; R. Gustafson; J. Hanks; J. Hanson; R. K. Hasskew; M. C. Heintze; A. F. Helmling-Cornell; N. A. Holland; J. D. Jones; S. Kandhasamy; S. Karki; P. J. King; Rahul Kumar; M. Landry; B. B. Lane; B. Lantz; M. Laxen; Y. K. Lecoeuche; J. Leviton; J. Liu; M. Lormand; A. P. Lundgren; R. Macas; M. MacInnis; D. M. Macleod; S. Márka; Z. Márka; D. V. Martynov; K. Mason; T. J. Massinger; R. McCarthy; D. E. McClelland; S. McCormick; J. McIver; G. Mendell; K. Merfeld; E. L. Merilh; F. Meylahn; T. Mistry; R. Mittleman; G. Moreno; C. M. Mow-Lowry; S. Mozzon; T. J. N. Nelson; P. Nguyen; L. K. Nuttall; J. Oberling; Richard J. Oram; C. Osthelder; D. J. Ottaway; H. Overmier; J. R. Palamos; W. Parker; E. Payne; R. Penhorwood; C. J. Perez; M. Pirello; H. Radkins; K. E. Ramirez; J. W. Richardson; K. Riles; N. A. Robertson; J. G. Rollins; C. L. Romel; J. H. Romie; M. P. Ross; K. Ryan; T. Sadecki; E. J. Sanchez; L. E. Sanchez; T. R. Saravanan; R. L. Savage; D. Schaetz; R. Schnabel; E. Schwartz; D. Sellers; T. Shaffer; B. J. J. Slagmolen; J. R. Smith; S. Soni; B. Sorazu; A. P. Spencer; K. A. Strain; L. Sun; M. J. Szczepańczyk; M. Thomas; P. Thomas; K. A. Thorne; K. Toland; C. I. Torrie; G. Traylor; A. L. Urban; G. Valdes; P. J. Veitch; K. Venkateswara; G. Venugopalan; A. D. Viets; T. Vo; C. Vorvick; M. Wade; R. L. Ward; J. Warner; B. Weaver; R. Weiss; B. Willke; C. C. Wipf; L. Xiao; H. Yamamoto; L. Zhang; M. E. Zucker; J. Zweizig
2021-06-18
发表期刊Science
出版年2021
英文摘要Cooling objects to low temperature can increase the sensitivity of sensors and the operational performance of most devices. Removing most of the thermal vibrations—or phonons—such that the object reaches its motional quantum ground state has been achieved but typically with tiny, nanoscale objects. Using the suspended mirrors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) that form a 10-kg optomechanical oscillator, Whittle et al. demonstrate the ability to cool such a large-scale object to nearly the motional ground state. An upgrade to LIGO with such a modification could increase its sensitivity and range to gravitational waves but also extend studies of quantum mechanics to large-scale objects. Science , abh2634, this issue p. [1333][1] The motion of a mechanical object, even a human-sized object, should be governed by the rules of quantum mechanics. Coaxing them into a quantum state is, however, difficult because the thermal environment masks any quantum signature of the object’s motion. The thermal environment also masks the effects of proposed modifications of quantum mechanics at large mass scales. We prepared the center-of-mass motion of a 10-kilogram mechanical oscillator in a state with an average phonon occupation of 10.8. The reduction in temperature, from room temperature to 77 nanokelvin, is commensurate with an 11 orders-of-magnitude suppression of quantum back-action by feedback and a 13 orders-of-magnitude increase in the mass of an object prepared close to its motional ground state. Our approach will enable the possibility of probing gravity on massive quantum systems. [1]: /lookup/doi/10.1126/science.abh2634
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/330812
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Chris Whittle,Evan D. Hall,Sheila Dwyer,et al. Approaching the motional ground state of a 10-kg object[J]. Science,2021.
APA Chris Whittle.,Evan D. Hall.,Sheila Dwyer.,Nergis Mavalvala.,Vivishek Sudhir.,...&J. Zweizig.(2021).Approaching the motional ground state of a 10-kg object.Science.
MLA Chris Whittle,et al."Approaching the motional ground state of a 10-kg object".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chris Whittle]的文章
[Evan D. Hall]的文章
[Sheila Dwyer]的文章
百度学术
百度学术中相似的文章
[Chris Whittle]的文章
[Evan D. Hall]的文章
[Sheila Dwyer]的文章
必应学术
必应学术中相似的文章
[Chris Whittle]的文章
[Evan D. Hall]的文章
[Sheila Dwyer]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。