GSTDTAP  > 资源环境科学
DOI10.1073/pnas.2004192118
Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment
Rachel M. Wilson; Malak M. Tfaily; Max Kolton; Eric R. Johnston; Caitlin Petro; Cassandra A. Zalman; Paul J. Hanson; Heino M. Heyman; Jennifer E. Kyle; David W. Hoyt; Elizabeth K. Eder; Samuel O. Purvine; Randall K. Kolka; Stephen D. Sebestyen; Natalie A. Griffiths; Christopher W. Schadt; Jason K. Keller; Scott D. Bridgham; Jeffrey P. Chanton; Joel E. Kostka
2021-06-22
发表期刊Proceedings of the National Academy of Sciences
出版年2021
英文摘要

In this study, a suite of complementary environmental geochemical analyses, including NMR and gas chromatography-mass spectrometry (GC-MS) analyses of central metabolites, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) of secondary metabolites, and lipidomics, was used to investigate the influence of organic matter (OM) quality on the heterotrophic microbial mechanisms controlling peatland CO2, CH4, and CO2:CH4 porewater production ratios in response to climate warming. Our investigations leverage the Spruce and Peatland Responses under Changing Environments (SPRUCE) experiment, where air and peat warming were combined in a whole-ecosystem warming treatment. We hypothesized that warming would enhance the production of plant-derived metabolites, resulting in increased labile OM inputs to the surface peat, thereby enhancing microbial activity and greenhouse gas production. Because shallow peat is most susceptible to enhanced warming, increases in labile OM inputs to the surface, in particular, are likely to result in significant changes to CO2 and CH4 dynamics and methanogenic pathways. In support of this hypothesis, significant correlations were observed between metabolites and temperature consistent with increased availability of labile substrates, which may stimulate more rapid turnover of microbial proteins. An increase in the abundance of methanogenic genes in response to the increase in the abundance of labile substrates was accompanied by a shift toward acetoclastic and methylotrophic methanogenesis. Our results suggest that as peatland vegetation trends toward increasing vascular plant cover with warming, we can expect a concomitant shift toward increasingly methanogenic conditions and amplified climate–peatland feedbacks.

领域资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/330738
专题资源环境科学
推荐引用方式
GB/T 7714
Rachel M. Wilson,Malak M. Tfaily,Max Kolton,et al. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment[J]. Proceedings of the National Academy of Sciences,2021.
APA Rachel M. Wilson.,Malak M. Tfaily.,Max Kolton.,Eric R. Johnston.,Caitlin Petro.,...&Joel E. Kostka.(2021).Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment.Proceedings of the National Academy of Sciences.
MLA Rachel M. Wilson,et al."Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment".Proceedings of the National Academy of Sciences (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rachel M. Wilson]的文章
[Malak M. Tfaily]的文章
[Max Kolton]的文章
百度学术
百度学术中相似的文章
[Rachel M. Wilson]的文章
[Malak M. Tfaily]的文章
[Max Kolton]的文章
必应学术
必应学术中相似的文章
[Rachel M. Wilson]的文章
[Malak M. Tfaily]的文章
[Max Kolton]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。