GSTDTAP  > 气候变化
DOI10.1126/science.abd8377
Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance
Konstantin Shatalin; Ashok Nuthanakanti; Abhishek Kaushik; Dmitry Shishov; Alla Peselis; Ilya Shamovsky; Bibhusita Pani; Mirna Lechpammer; Nikita Vasilyev; Elena Shatalina; Dmitri Rebatchouk; Alexander Mironov; Peter Fedichev; Alexander Serganov; Evgeny Nudler
2021-06-11
发表期刊Science
出版年2021
英文摘要Persister cells, which are found in abundance in biofilms, adopt a quiescent state and survive antimicrobial treatments, seeding disease recurrence and incubating new resistance mutations. Building on work implicating the reactive small-molecule hydrogen sulfide in bacterial defense against antibiotics, Shatalin et al. conducted a structure-based screen for inhibitors of a bacterial hydrogen sulfide–producing enzyme and found a group of inhibitors that act through an allosteric mechanism (see the Perspective by Mah). These inhibitors potentiated bactericidal antibiotics in vitro and in mouse infection models. They also suppressed persister bacteria and disrupted biofilm formation. This strategy of taking out persister cells may be promising for treating recalcitrant infections and holding the line against drug-resistant bacteria. Science , abd8377, this issue p. [1169][1]; see also abj3062, p. [1153][2] Emergent resistance to all clinical antibiotics calls for the next generation of therapeutics. Here we report an effective antimicrobial strategy targeting the bacterial hydrogen sulfide (H2S)–mediated defense system. We identified cystathionine γ-lyase (CSE) as the primary generator of H2S in two major human pathogens, Staphylococcus aureus and Pseudomonas aeruginosa , and discovered small molecules that inhibit bacterial CSE. These inhibitors potentiate bactericidal antibiotics against both pathogens in vitro and in mouse models of infection. CSE inhibitors also suppress bacterial tolerance, disrupting biofilm formation and substantially reducing the number of persister bacteria that survive antibiotic treatment. Our results establish bacterial H2S as a multifunctional defense factor and CSE as a drug target for versatile antibiotic enhancers. [1]: /lookup/doi/10.1126/science.abd8377 [2]: /lookup/doi/10.1126/science.abj3062
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/329908
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Konstantin Shatalin,Ashok Nuthanakanti,Abhishek Kaushik,et al. Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance[J]. Science,2021.
APA Konstantin Shatalin.,Ashok Nuthanakanti.,Abhishek Kaushik.,Dmitry Shishov.,Alla Peselis.,...&Evgeny Nudler.(2021).Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance.Science.
MLA Konstantin Shatalin,et al."Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Konstantin Shatalin]的文章
[Ashok Nuthanakanti]的文章
[Abhishek Kaushik]的文章
百度学术
百度学术中相似的文章
[Konstantin Shatalin]的文章
[Ashok Nuthanakanti]的文章
[Abhishek Kaushik]的文章
必应学术
必应学术中相似的文章
[Konstantin Shatalin]的文章
[Ashok Nuthanakanti]的文章
[Abhishek Kaushik]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。